Template Based MDE

Matthieu Allon! , Gilles Vanwormhoudt!? , Bernard Carré!
and Olivier Caron'

! University of Lille 1 - CRIStAL Lab. (UMR CNRS 9189)
2 Mines-Telecom Institute
France, Villeneuve d’Ascq
{Gilles.Vanwormhoudt, Bernard.Carre, Olivier.Caron}@univ-lillel.fr
{Matthieu.Allon}@etudiant.univ-1illel.fr

Abstract

In MDE, design of systems can be improved and accelerated thanks to reusable models which
are made available in model repositories or libraries. This paper focuses on the construction and
exploitation of “off-the-shelf” model template bases. Model templates are parameterized mod-
els which are adaptable to various application contexts. Due to their parameterization, model
templates have their own modeling space. In this paper, we present the main construction
and composition operations that underlie this space while presenting its dedicated engineering
processes and actors. A software environment is shown to illustrate template based engineering
in Eclipse.

Keywords: Parameterized Models, Model Templates, Model Reuse, Model Space.

1 Introduction

In MDE, model reuse is a big challenge that aims to facilitate the capitalization of technology
independent design efforts and logics (“off-the-shelf” model component libraries [7]), then to
accelerate system design and improve their quality. In existing works on model reuse, main
approaches are based either on the use of composable model pieces, either on parameterized
models which are adaptable to various application contexts [5l [IT], [6].

We ourselves contributed to this research by studying model parameterization techniques
such as the one offered by the UML “Template” construct. We have defined an approach
that allows the design of systems by assembling templates which model reusable functionalities
through parameterization [9] [I0]. This approach uses an application operator allowing to add
functionalities specified by a template to a model after parameter substitution.

Starting from this work, we focus now on the construction and exploitation of model tem-
plate bases and the related engineering processes. Our objective is to increase the capacities
for creating, composing and reuse templates within such bases. Resulting model spaces must
be systematically characterized to master and exploit their structuring properties. After a re-
minder on model templates, we present our vision of model template spaces and the related
operations. Then, we describe a software environment in Eclipse to construct and exploit model
template spaces in UML.

2 Reminder on model templates

UML Templates [I] allow to capture modeling constructs which expose some of their el-
ements as parameters. Such constructs can be classes or packages (but not only), so called
respectively class templates or package templates. To specify its parameterization, a template

owns a signature, which is a list of formal parameters where each parameter designates an
element that is part of the templated model. It is the intent of templates to be instantiated,
so reused. For template application, the standard defines a specific “template binding” rela-
tionship. This relationship allows to specify how the content of a base model is derived from a
template through the substitution of its parameters.

In UML, template parameters are only individual and form an unstructured set of model
elements of the template so that the construct is general and permissive enough to represent
much of model parameterization needs such as the modeling of generic classes (such as C++
templates) [2], the capture of Design Patterns [12], View [5] or Aspect Oriented Modeling [§].
In [I4], we proposed a compatible enhancement of UML templates which consists in enforcing
templates to have a full model as parameter. The aim of this enhancement is to improve the
consistency of templates, notably for aspectual usages, but also to better specify the model
of systems to which the functionalities will apply. Following this enhancement, the binding
mechanism has been adapted to enable substitution of the model parameter by a conforming
substructure of the base model.

Figure [I] gives an example of such an enhanced template as well as its application for
injecting stock management functionalities to a base model. One can observe that the template
parameters (see the superimposed dashed box) form a full model and one can verify that its
structure is well-preserved by the substituted elements in the binding: “Stock” by “Agency”,
“Resource” by “Car”, “identifier” by “name”, “ref” by “number” and “in” by “ac”. The
expected result of this template application is shown in the lower right.

fmm—mmm e mmm === =
L lStock L Resgurce 1 CarHiringSystem
identifier: String + ref: String 1
StockManagement | 0.. -
| | Client
T Stoek Ty T T T T T o oo oo oo -—-= Agency lient name:String
Lo SOCH __ _ h e me e St clien . Qi
ridentifier: String 1 _ _ _Resource_ _ _! [S----oro--o----- name:String 0 | Phone: String
. i vn = F St H <<bind>> address:String -
capacity:int * & wref: String
R widd 0. == ==~ b i Al [< Stock -> Agency, ac
tadd(r:Resource) ' itransfer(s:Stock) ! R >C " Car
'delete(rResource) + TTTTTTTTTToooo) esgurce -> ar, 0. number:String
”””””””” :'i?nsﬁr?urr;zgrame, model: String
in ->ac>
CarHiringSystem
Client
Agency X name:String
name:String client g=| Phone: String
address:String -
capacity:int Car
add(c:Car) ac o+ | number:String
delete(c:Car) -~ | model: String
transfer(a:Agency)

Figure 1: Template application

The previous template construct and application mechanism constitute a useful building
block in the context of model reuse. When composed in the large and hierarchically, it allows
to design complex systems from assemblies of templates but also to obtain richer templates
from existing ones. A formalization in OCL of this semantic variation of the standard has
been proposed in [I4]. This formalization aims at capturing the common grounding of model
templates with the “parameter as model” requirement, so that they can be exploited in any
approach which use UML templates [8], 4} [TT].

3 Template Based Model Engineering

On the basis of the previous model template technique, specific modeling spaces with their
dedicated engineering practices and automatic processes emerge. Fig[2]shows an illustration of
such a modeling space with typical involved actors and the respective activities around a model
repository containing templates and models that they share.

Repository
Model —— /—r\
Parameterization | TTTT[777C '
(A) populate \i—/
i i retrieve
Template :
composition
(8) .
| populate }
populate H H
?.—"J:.A‘ - \ / binding\
Template N - E2ito- Tl Tetrieve v |
decomposition H U 0 E 1
(C) L_______ibindingi ______ %7 \E—» binding
,,,,,,,,,, :,M T
Template E‘ AAAAA S —
induction ! !
o) b e

S | |retrieve w
\ :
N T 1
N 1
1

bindings

Template Designer /\ Application Modeler /\

Figure 2: Template Based Model Engineering

In this modeling space, designers of model templates are mainly concerned with “design for
reuse” and the constitution of libraries (“off-the-shelf models”). For this purpose, they have to
identify candidate model of functionnalities and represent them as model templates for enabling
their reuse. Several activities (see Fig are of interest for this engineering task :

e Parameterization of models from the selection of elements corresponding to the model of
systems to which the specific functionalities may apply (activity (A)).

e Composition of existing templates in order to build richer ones (activity (B)), notably
through partial template binding as this mechanism produces new templates.

e Decomposition of a previously identified complex template (activity (C)) which leads to
identify finer ones.

e Induction of new templates from previously designed models of systems which share com-
mon functionalities (activity (D)).

Application modelers are much concerned with “design by reuse” methodology (right of
Fig. From the efforts of template designers they get the possibility to exploit model tem-
plates for their application needs in a safe manner through “template binding”. Binding activity

is iterative and compositional, allowing the construction of complex systems by successive ap-
plication of model templates following rich model assemblies.

All these engineering practices must be controlled in an homogeneous and consistent manner.
This requires a precise formalization and characterization of model templates as well as their
relationships and dedicated operators. More generally, this issue is concerned with the question
of model inclusion and model typing within the same meta-modeling space [3]. We are currently
investigating this question in the specific context of model templates.

4 EMF technology

We are designing reusable technology and a software environment dedicated to template
based model engineering in Eclipse. This environment is composed of plugins which are based
on the official EMF (Eclipse Modeling Framework), UML and OCL plugins. These plugins
offer core functionalities to specify and verify templates well-formedness and their binding in a
compliant way with the UML plugin thanks to a specific profile. In addition, the plugins pro-
vide general and original facilities to support other modeling tasks targeting templates or user
assistance. For instance, there are facilities to determine the missing parameters in template
signatures and bindings. Some facilities also exist for automatic completion of signatures and
bindings as well as for inference of parameter substitutions. All the plugins functionalities are
reusable for modeling tools that handle model templatesﬂ In our case, they were used to build
an interactive tool (see Fig. |3).

&) CarHiringSystemBindStockManagement.uml 53 @ UML Viewer 53

. & p
4 B3 <Model> CarHiringSystemBindStockManagement
% <Element Import> PrimitiveTypes

4|3 <Package> CarHiringSystem
44, <<AspectualTemplateBinding>> <Template Binding>

@ Stock -> Agency Package CarHiringSystem Package StockManagement <Stock,Resource, identifier, ref,in>
@ Resource -> Car
2.: identifier -> name Car Client Niaiainisen Rés&&me
2 ref - 1
rof -2 number + number : EString + name : EString

9 in->ac
[<Class> Agency
L] <Class> Client.

[<Class> Car 0.7 0., .
. n
/ <Assodiation> ac ac Client !
/ <Association> client 1
i <Profile Application> AspectualTemplateProfile 1 1 : Stock .

4@ p amples/St I ‘Agency bind <ref 1~ number R {

+ model : EString + phone ; EString

4 [F3 <<AspectualTemplate>> <Package> StockManagement - identifier|-> name _ _ _ s identifier : EString]
23, <Element Import> PrimitiveTypes gLt in-1ac | ¥ capacity : Elnt
4[§' <<AspectualTemplateSignature>> <Template Signature> : & Stock ->| Agency add (Resource 1) : void
(2 <Classifier Template Parameter> Stock Resource -~ Clar> ! idAB!Ef? ggefclurcﬁr?f Avfu?» :

(2 <Classifier Template Parameter> Resource

©: <Connectable Element Template Parameter> identifier
©: <Connectable Element Template Parameter> ref
£: <Classifier Template Parameter> in

I <Class> Stock

=l <Class> Resource

/ <Asseciation> in

Figure 3: Tool snapshot

Following main features are currently under study in order to support plain template based
engineering:

e An engine for determining inclusion and typing relationships between templates and their
constituents. Such relationships should permit hierarchical structuring of templates that
can be beneficial to many template-based tasks ranging from application to search. For
the development of this feature, we will exploit our submodel engine [3].

e A richer set of template operators. Currently, only parameterization and binding with
their checking, completion and inference facilities are available. Other operators such as
template decomposition and template induction are under study.

Thttp://www.cristal.univ-1lille.fr/caramel/aspectualtemplates

http://www.cristal.univ-lille.fr/caramel/aspectualtemplates

5

e Templates searching capacities in model repositories. Using the relationships mentioned
previously, a searching system similar to the one described in [13] but specific to templates
can be developed. From a selected template, this system will enable to find similar
templates with regard to its constituents into repositories and hierarchically present then.

Conclusion

In this paper, starting from our previous work, we sketch the model template modeling space

and its associated engineering. We presented an environment that illustrates how these two
dimensions can be supported practically. As indicated, fundamental issues need to be investi-
gated to the help of full template-based modeling and engineering. This work will contribute to
better understanding and generalization of templates for the quest of model reuse and model
space structuring.

References

(1]
2l

3]

4]

(5]

(9]

(10]

(11]

(12]

(13]

(14]

UML 2.4.1 template chapter. http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF. [Ac-
cessed 19-March-2015].

J. Bigot C. Pérez. Increasing Reuse in Component Models through Genericity. Formal Foundations
of Reuse and Domain Engineering Lecture Notes in Computer Science, 5791:21-30, 2009.

B. Carré, G. Vanwormhoudt, and O. Caron. From subsets of model elements to submodels: A
characterization of submodels and their properties. Software & Systems Modeling, 14(2):861-887,
May 2015.

S. Clarke and R.J. Walker. Generic aspect-oriented design with theme/UML. Aspect-oriented
software development, pages 425-458, 2005.

D. DSouza and A.C. Wills. Catalysis: Objects, Components, and Frameworks with UML. Object
Technology Series. Addison-Wesley, 1998.

D. Del Fabro and J. Bézivin. Generic model management: from theory to practice. In First
International Workshop on Towers of Models - TOWERS 2007 (co-located with TOOLS EUROPE
2007), pages 1-9, 2007.

M. Herrmannsdorfer and B. Hummel. Library concepts for model reuse. FElectronic Notes in
Theoretical Computer Science, pages 121-134, 2010.

J. Kienzle, W. Al Abed, F. Fleurey, J.M. Jézéquel, and J. Klein. Aspect-oriented design with
reusable aspect models. In Transactions on Aspect-Oriented Software Development, volume VII;
pages 272-320. Springer, 2010.

A. Muller. Construction de systémes par application de modéles paramétrés. PhD thesis, University
of Lille 1, 2006.

A. Muller, O. Caron, B. Carré, and G. Vanwormhoudt. On some properties of parameterized
model application. In Model Driven Architecture-Foundations and Applications, pages 130-144.
Springer, 2005.

Y.R. Reddy, S. Ghosh, R.B. France, G. Straw, J. M. Bieman, N. McEachen, E. Song, and G. Georg.
Directives for composing aspect-oriented design class models. In Transactions on Aspect-Oriented
Software Development (I), volume I, pages 75-105. Springer, 2006.

G. Sunyé, A. Le Guennec, and J-M. Jézéquel. Design Patterns Application in UML. In Proceed-
ings of 14th European Conference on Object-Oriented Programming (ECOOP’2001), pages 44—62.
Springer, 2000.

G. Vanwormhoudt, B. Carré, O. Caron, and C. Tombelle. Recherche de sous-modeles. In CIEL
2014, Troisiéme Conférence en IngénieriE du Logiciel, pages 126-130. HAL, 2014.

G. Vanwormhoudt, O.Caron, and B. Carré. Aspectual templates in UML. Software & Systems
Modeling, dx.doi.org/10.1007/s10270-015-0463-3:p. 29, 2015.

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

	Introduction
	Reminder on model templates
	Template Based Model Engineering
	EMF technology
	Conclusion

