SIT

securityandtrustiu

Scalable Software Testing and Verification
Through Heuristic Search and Optimization:
Experiences and Lessons Learned

Lionel Briand

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

GDR-GPL, Bordeaux, June 2015
.

lllllllll i



Acknowledgements ST

secuntyandtrustiu

PhD. Students:

« Vahid Garousi
 Marwa Shousha
« Zohaib Igbal
 Reza Matinnejad
« Stefano Di Alesio

Scientists:

« Shiva Nejati
 Andrea Arcuri
* Yvan Labiche
» Arnaud Gotlieb



secuntyandtrustiu

Scalable Software Testing and
Verification Through Heuristic
Search and Optimization




Verification, Testing

ST

« The term “verification” is used in its wider sense: Defect
detection.

« Testing is, in practice, the most common verification
technique.

 Testing is about systematically, and preferably
automatically, exercise a system such as to maximize

chances of uncovering (important) latent faults within time
constraints.

« Other forms of verifications are important too (e.g., design
time, run-time), but much less present in practice.

« Decades of research have not yet significantly and widely
impacted software verification practice.



Scalable? Applicable?
ST

« Scalable: Can a technology be applied on large
artifacts (e.g., models, data sets, input spaces) and
still provide useful support within reasonable effort,
CPU and memory resources?

« Applicable: Can a technology be efficiently and
effectively applied by engineers in realistic
conditions?

— realistic # universal
— includes usability



Focus

ST

« Formal Verification (Wikipedia): In the context of
hardware and software systems, formal
verification is the act of proving or disproving the
correctness of intended algorithms underlying a
system with respect to a certain formal specification
or property, using formal methods of mathematics.

* Qur focus: How can we, in a practical, effective and
efficient manner, uncover as many (critical) faults as
possible in software systems, within time
constraints, while scaling to artifacts of realistic
size.




Metaheuristics
SIT

« “A metaheuristic is a heuristic method for solving a
very general class of computational problems by
combining user given black-box procedures —
usually heuristics themselves — in a hopefully
efficient way.” (Wikipedia)

 Hill climbing, Tabu search, Simulated Annealing,
Genetic algorithms, Ant colony optimisation ....

« Qur research is agnostic to any specific technology
but is driven by problems — the use of metaheuristics
IS however a recurring pattern. Why?
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Talk Outline §M
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 Context

« Selected project examples, with industry
collaborations

« Similarities and patterns

» Lessons learned
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SnT Software Verification and Validation Lab SNT

« SnT centre, Est. 2009: Interdisciplinary,
ICT security-reliability-trust

« 230 scientists and Ph.D. candidates, 20
industry partners

« SVV Lab: Established January 2012,
WWW.SVV.Iu

« 25 scientists (Research scientists,
associates, and PhD candidates)

* Industry-relevant research on system
dependability: security, safety, reliability

» Partners: Cetrel, CTIE, Delphi, SES,
|[EE, Hitec ...
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Collaborative Model of Research and Innovation SNIT
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Schneiderman, 2013

Innovation & Development

I

« Basic and applied research take place in a rich context

« Basic Research is also driven by problems raised by applied
research, which is itself fed by innovation and development

» Publishable research results and focused practical solutions that
serve an existing market. 11



Collaboration in Practice
ST

secuntyandtrustiu

« Well-defined problems in context
« Realistic evaluation
* Long term industrial collaborations

Industry
Partners

LN N N N N N - L N N N N N N N ] --I-ni-ti-al---
Validation

ST

Research
Groups
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Testing Software Controllers

References:

* R. Matinnejad et al., “Effective Test Suites for Mixed Discrete-Continuous Stateflow
Controllers”, ACM ESEC/FSE 2015

* R. Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers:
Scalable Search Using Surrogate Models”, IEEE/ACM ASE 2014

* R. Matinnejad et al., “Search-Based Automated Testing of Continuous Controllers:
Framework, Tool Support, and Case Studies”, Information and Software Technology,
Elsevier (2014)

13




Electronic Control Units (ECUSs) SN
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Comfort and variety

More functions Safety and reliability

Faster time-to-market Greenhouse gas emission laws

Less fuel consumption .



Dynamic Continuous Controllers
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A Taxonomy of Automotive Functions SN
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comen ooty
= =

unit convertors  calculating positions, State maCh@losed-loop
C

duty cycles, etc controllers ontrollers (PID)

Different testing strategies are required for
different types of functions
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Development Process

(Model-in-the-Loop )
Stage

( )

D

Simulink Modeling

D

MiL Testing

Getting Started with Simulink® 7

A\

MATLAB
SIMULINK"

4\ The MathWorks

B

Generic
Functional
Model

Stage

( Software-in-the-Loop A

~ »

Code Generation
and Integration

D

SiL Testing

program

J
~N

[N

Software
Release

———>

[Hardware-in-the-Loop\

ST
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Stage )
( )

D

Software Running
on ECU

D

HiL Testing
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MATLAB/Simulink model

>
[ p— > B0\ +
1 —Pp—o
Constant Switch

1
— |4
Z

Unit Delay1
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* >
Scope
1
—  |lq—
Z
Unit Delay

Fibonacci sequence: 1,1,2,3,5,8,13,21,...

18




Controller Input and Output at MIL

Desired valuei. Error | Controller
(SUT)

Actual value

Plant
Model

System output
y P o

Test Input Test Output
Wy Actual Val
Desired Valugf=====================--- T \ .................. L? 1
Final T S N N F .E_"
Desired Value Mf
T2 T T2 T
time time
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Controllers at MIL SﬂT
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Inputs: Time-dependent variables

Ade'.31red( t)

output t

—»|Plant Model L
actual(t)

" P er(t) -« |

)=

I K]fe(t)dt <

T

Configuration Parameters
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Requirements and Test Objectives SIT
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3 Desired Valuel (input)
7 Actual Value (output)
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Test Strategy: A Search-Based Approach ST

Worst Case(s)?

Final Desired (FD)

Initial Desired (ID)

Continuous behavior

Controller’s behavior can
be complex

Meta-heuristic search In
(large) input space:
Finding worst case inputs
Possible because of

automated oracle
(feedback loop)

Different worst cases for
different requirements

Worst cases may or may
not violate requirements

22



Smoothness Objective Functions: Og, ohness ST

Test Case A Test Case B

C)Smoothness(-reSt Case A) > C)Smoothness(-reSt Case B)

We want to find test scenarios which maximize Og, ,ohness

23



Search Elements
SIT

Search Space:
« Initial and desired values, configuration parameters

Search Technique:
* (1+1) EA, variants of hill climbing, GAs ...

Search Objective:
» Objective/fitness function for each requirement

Evaluation of Solutions
« Simulation of Simulink model => fitness computation

e Result:

» Worst case scenarios or values to the input variables that (are
more likely to) break the requirement at MiL level

 Stress test cases based on actual hardware (HiL)

—

24



Solution Overview (Simplified Version) ST
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based on ‘1 N
Requirements : = List of 2. Single-State Worst-C
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Automotive Example SIT

« Supercharger bypass flap controller
v'Flap position is bounded within [0..1]
v Implemented in MATLAB/Simulink

v 34 sub-components decomposed into 6
abstraction levels

v'The simulation time T=2 seconds

VN

Bypass Flap Bypass Flap
- —_— —

Supercharger Supercharger

Flap position = 0 (open) Flap position = 1 (closed)
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Finding Seeded Faults _]

-
B Test Results =
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Analysis — Fitness increase over iterations ST
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Conclusions ST
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 We found much worse scenarios during MiL testing than our
partner had found so far, and much worse than random
search (baseline)

 These scenarios are also run at the HiL level, where testing is
much more expensive: MiL results -> test selection for HiL

« But further research was needed:
— Simulations are expensive
— Configuration parameters (ASE 2014)

— Dynamically adjust search algorithms in different
subregions (exploratory <-> exploitative)
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Testing in the Configuration Space SIT

MIL testing for all feasible configurations
 The search space is much larger

* The search is much slower (Simulations of Simulink
models are expensive)

 Results are harder to visualize

« Not all configuration parameters matter for all
objective functions

31



Modified Process and Technology ST
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Objective Z
495 v

Functions 1. Exploratlon W|th NG List of 2.Search with

S Worst-Case

+ P Dlmensmnallt - = Y\N\ =P Critical Surrogate |=P> ret-va
Controller y Reqression (- . Scenarios
Reduction g Domain Partitions Modeling
Model Tree
Expert

Visualization of the
8-dimension space

(Simulink) / \

Dimensionality using regression trees v
reduction to identify Surrogate modeling
the significant variables to predict the objective

function and
speed up the search
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Dimensionality Reduction
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Sensitivity Analysis:
Elementary Effect Analysis
(EEA)

|[dentify non-influential
inputs in computationally
costly mathematical
models

Requires less data points
than other techniques

Observations are
simulations generated
during the Exploration step

Compute sample mean
and standard deviation for
each dimension of the
distribution of elementary
effects

33



Elementary Effects Analysis Method ST

v Imagine function F with 2 inputs, x and y:

Elementary Effects

I for X forY
B'2 F(A1)-F(A) F(A2)-F(A)
A, F(B1)-F(B) F(B2)-F(B)
— F(C1)-F(C) F(C2)-F(C)
A2 v P . .n
: c2
A, °
»e A1l Ay
A A,
c JAVS ~e ¢
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Visualization in Inputs & Configuration Space SIT
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All Points

Count 1000
Mean 0.007822
Std Dev 0.0049497

FD>=0.43306 FD<0.43306

Count 574 Count 426

Mean 0.0059513 Mean 0.0103425

Std Dev 0.0040003 Std Dev 0.0049919
1D<0.64679 ID>=0.64679 Cal5>=0.020847 Cal5>0.020847
Count 373| | Count 201 Count 244 Count 182
Mean 0.0047594| |Mean 0.0081631 Mean 0.0080206 Mean 0.0134555

Std Dev 0.0034346| | Std Dev 0.0040422 Std Dev 0.0031751 Std Dev  0.0052883

Cal5>=0.014827 Cal5<0.014827

Count 131 Count 70

Mean 0.0068185 Mean 0.0106795 :

Std Dev  0.0023515 Std Dev  0.0052045 Regression Tree
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Surrogate Modeling (1) SIT
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« Goal: To predict the value of the objective functions within a
critical partition, given a number of observations, and use that to
avoid as many simulations as possible and speed up the search
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Surrogate Modeling (2) SIT
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Real Function - * Any supervised learning or
. statistical technique
£ tlzes S Surrogate Model — — — providing fitness predictions

with confidence intervals

1. Predict higher fitness with
high confidence: Move to
new position, no simulation

2. Predict lower fitness with
high confidence: Do not
move to new position, no
simulation

> X 3. Low confidence in
prediction: Simulation

37




Experiments Results (RQ1) SIT

v The best regression technique to build Surrogate models
for all of our three objective functions is Polynomial
Regression with n = 3

v Other supervised learning techniques, such as SVM

Mean of R2/MRPE values for different surrogate modeling techniques

LR ER PR(n=2) PR(n=3)

0.66/0.0526 0.44/0.0791 0.95/0.0203
0.78/0.0295 0.49/1.2281 0.85/0.0247




Mean Relative Prediction Errors

Experiments Results (RQ2)
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ST

v' Dimensionality reduction helps generate better surrogéfé
models for Smoothness and Responsiveness
requirements
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Experiments Results (RQ3) ST
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v’ For responsiveness, the search with SM was 8 times faste

After 200 seconds After 300 seconds After 3000 seconds

5 0.168 | I . @ I . é
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v" For smoothness, the search with SM was much more effective

After 800 seconds After 2500 seconds After 3000 seconds
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Experiments Results (RQ4)

ST

v Our approach is able to identify critical violations of the
controller requirements that had neither been found by
our earlier work nor by manual testing.

MiL-Testing
different configurations

MiL-Testing
fixed configurations

Manual MiL-Testing

Stability

2.2% deviation

Smoothness

24% over/undershoot

20% over/undershoot

5% over/undershoot

Responsiveness

170 ms response time

80 ms response time

50 ms response time

41




A Taxonomy of Automotive Functions SN
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unit convertors  calculating positi State machine sed-loop
duty cycles, etc controllers ntrollers (PID)

Different testing strategies are required for
different types of functions

42




Differences with Close-Loop Controllers SIT

Mixed discrete-continuous
behavior: Simulink stateflows

Much quicker simulation time

No feedback loop -> no
automated oracle

The main testing cost is the
manual analysis of output
signals

Goal: Minimize test suites
Challenge: Test selection

Entirely different approach to
testing

secuntyandtrustiu

Engaging

!

OnMoving

time + +;
trlSig:= f(time)

[—(vehspd = 0) A
time > 2]

OnSlipping

time + +;
trlSig := g(time

[time > 4]

[(vehspd = 0) A
time > 3]

OnCompleted

time + +;
ctrlSig:=1.0

43




Selection Strategies SIT

Adaptive Random Selection

White-box Structural Coverage

« State Coverage

« Transition Coverage

Output Diversity

Failure-Based Selection Criteria (search)
 Domain specific failure patterns

e  Output Stability

* Qutput Continuity

44
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SIT
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Continuity SIT
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1.0 B
0.75 -
0.50 -
0.25 -
0.0 - A
0.0 1.0 2.0
Time
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Minimizing CPU Shortage Risks
During Integration

References:

« S. Nejati et al., “Minimizing CPU Time Shortage Risks in Integrated Embedded
Software”, in 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2013), 2013

» S. Nejati, L. Briand, “Identifying Optimal Trade-Offs between CPU Time Usage and
Temporal Constraints Using Search”, ACM International Symposium on Software
Testing and Analysis (ISSTA 2014), 2014
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Automotive: Distributed Development ST
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Software Integration ST

b (&!

securityandtrustiu
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Stakeholders

0.2

Lk

—

\

Car Makers

« Develop software optimized for
their specific hardware

* Provide part suppliers with
runnables (exe)

L JF
f

4

V\

ST
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Part Suppliers

Integrate car makers software
with their own platform

Deploy final software on ECUs
and send them to car makers

50



Different Objectives ST

Car Makers Part Suppliers
« Obijective: Effective executionand ¢ Objective: Effective usage of
synchronization of runnables CPU time
« Some runnables should execute * Max CPU time used by all the
simultaneously or in a certain order runnables should remain as low

as possible over time

51



An overview of an integration process in the SIT
automotive domain L
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Original Equipment Manufacturer

OEM \

sw runnables

AUTOSAR Models 4+
% > Glue
AUTOSAR Models +
‘ sw runnables
DelLPHI

Automotive Systems

52




CPU time shortage ST

lu

« Static cyclic scheduling: predictable, analyzable
« Challenge

— Many OS tasks and their many runnables run within a limited
available CPU time
» The execution time of the runnables may exceed their time slot

* Qur goal

— Reducing the maximum CPU time used per time slot to be
able to
* Minimize the hardware cost
» Reduce the probability of overloading the CPU in practice
« Enable addition of new functions incrementally

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms -
5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms - 53
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Using runnable offsets (delay times)

—
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Insertlng runnables’ ojf?ets

>

10ms 15ms 20ms 25ms 30ms 35ms 40ms X

>

v

Sms 1 Oms 1 5 ms 20ms 25 ms 3 Oms 3 5 ms 4 Oms

Offsets have to be chosen such that
the maximum CPU usage per time slot is minimized, and further,
the runnables respect their period
the runnables respect their time slot
the runnables satisfy their synchronization constraints

54



Without optimization
’ ST

>

5.34ms 5.34ms

CPU time usage (ms)

>

Time

CPU time usage exceeds the size of the slot (5ms)

55



With Optimization
ST

>

2.13ms

CPU time usage (ms)

- >
Time

CPU time usage always remains less than 2.13ms, so
more than half of each slot is guaranteed to be free 56



Single-objective Search algorithms SIT

Hill Climbing and Tabu Search and their variations

Solution Representation

a vector of offset values: 00=0, 01=5, 02=5, 03=0

Tweak operator
00=0, 01=5, 02=5, 03=0 -> 00=0, 01=5, 02=10, 03=0

Synchronization Constraints
offset values are modified to satisfy constraints

Fitness Function
max CPU time usage per time slot

57



Summary of Problem and Solution

Optimization Explicit Time
Model
while satisfying synchronization/ for real-time embedded systems
temporal constraints
Search 10727
meta-heuristic single objective an industrial case study with a
search algorithms large search space
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Search algorithms

il
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- The objective function is the max CPU usage of a 2s-simulation of
runnables

- The search modifies one offset at a time, and updates other offsets
only if timing constraints are violated

- Single-state search algorithms for discrete spaces (HC, Tabu)

Case Study: an automotive software system with 430 runnables,
search space = 10"27

534dms . 2.13 ms

|||||||||||||||||||||||||||||||||||||||

Running the system without offsets Optimized offset assignment 59



Comparing different search algorithms ST
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Comparing our best search algorithm with

(a

Best Max CPU Usage (HC)

random search

Lowest max CPU usage values computed by HC within 70 ms
over 100 different runs

) 33

32

31

21

Lowest max CPU usage values computed by Random

(0),., within 70 ms over 100 different runs

(©)30

AT
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Comparing average behavior of Random and HC in computing
lowest max CPU usage values within 70 s and over 100 different runs

32

31

Best Max CPU Usage (Random)

Best Max CPU Usage

—Random
==== HC

-
g
2

T T T T
5 10 15 20 25 30 35 40 45 50
Time (s)

HC

Time (s)

Random

o

Time (s)

Average




Trade-off between Objectives SNT
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Car Makers roEE TimE T2 EE T3 Part Suppliers
Execute 7y to r3 close to one another. Minimize CPU time usage
1 slot 4ms

Ooms 5ms 10ms 15ms 20ms 25ms 30ms

2 slots 3ms
Ooms 5ms 10ms 15ms 20ms 25ms 30ms

3 slots Oms 5ms 10ms 15ms 20ms 2ms  30ms 2ms

62



Trade-off curve ST

o1 1§ - Boundary Trade Offs
79}
o
/p]
E Interesting
Solutions
14 3
~~
12 —@ 2
—_—
1.45 1.56 2.04 63

CPU time usage (ms)



Multi-objective search ST
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« Multi-objective genetic algorithms (NSGA 1I)

« Supporting decision making and negotiation between
stakeholders

Obijectives:
* (1) Max CPU time
* (2) maximum time

slots between
“‘dependent” tasks

n
3
1

+ NSGA-II(25,000)
+« Random(25,000)

ge (ms)

Max CPH Time Usa
o
|

10 12 15 20 25 30 35 40 45
Total Number of Time Slots 64




Trade-Off Analysis Tool SIT

A list of solutions:

He) LSearch} > - objective 1 (CPU usage)

- objective 2 (# of slots)
- vector of group slots

Input.csv: - vector of offsets

- runnables

- Periods @

- CETs

- Groups Visualization/

- # of slots per Query Analysis
groups

Visualize solutions

- Retrievelvisualize
simulations

- Visualize Pareto Fronts

- Apply queries to the

solutions 65
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Conclusions
- ST

- Search algorithms to compute
offset values that reduce the
max CPU time needed

- Generate reasonably good
results for a large automotive
system and in a small amount of
time

- Used multi-objective search -
tool for establishing trade-off
between relaxing
synchronization constraints and
maximum CPU time usage

66




ST

secuntyandtrustiu

Schedulability Analysis and Stress
Testing

References:

S. Nejati et al., “Modeling and analysis of cpu usage in safety-critical embedded

systems to support stress testing,” in IEEE/ACM MODELS 2012.

« S. DiAlesio et al., “Stress Testing of Task Deadlines: A Constraint Programming
Approach”, IEEE ISSRE 2013, San Jose, USA

« S. DiAlesio et al., “‘Worst-Case Scheduling of Software Tasks — A Constraint
Optimization Model to Support Performance Testing, Constraint Programming (CP),
2014

« S. DiAlesio er al. “Combining Genetic Algorithms and Constraint Programming to

Support Stress Testing”, ACM TOSEM (forthcoming)
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Real-time, concurrent systems (RTCS) ST

« Real-time, concurrent systems (RTCS) have
concurrent interdependent tasks which have
to finish before their deadlines

« Some task properties depend on the
environment, some are design choices

« Tasks can trigger other tasks, and can share
computational resources with other tasks

« How can we determine whether tasks meet
their deadlines?

68




Problem m

« Schedulability analysis encompasses techniques
that try to predict whether all (critical) tasks are
schedulable, i.e., meet their deadlines

« Stress testing runs carefully selected test cases
that have a high probability of leading to deadline
misses

« Stress testing is complementary to schedulability
analysis

« Testing is typically expensive, e.g., hardware in
the loop

* Finding stress test cases is difficult
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Finding Stress Test Cases is Difficult

ST
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jo, j1, j2 arrive at at0 , at1, at2 and must
finish before dl0, diI1, dI2
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J1 can miss its deadline dI1 depending on
when at2 occurs!
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Challenges and Solutions ST

* Ranges for arrival times form a very large input space

« Task interdependencies and properties constrain
what parts of the space are feasible

 We re-expressed the problem as a constraint
optimisation problem

« Constraint programming (e.g., IBM CPLEX)
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System monitors gas leaks and fire in
oil extraction platforms
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f Real-Time Operating System 1 Alarm Devices
\ (Hardware)
Multicore Architecture }
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Constraint Optimization ST

/ Constraint Optimization Problem \
4 )
Static Properties of Tasks é A

(Constants)

~ / OS Scheduler Behaviour

( ) (Constraints)

Dynamic Properties of Tasks
(Variables) \
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Performance Requirement

\ (Objective Function) }/
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Process and Technologies
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! UML Modeling (e.g., W

_ - INPUT MARTE)
System Design Design Model (Time
and Concur_rency
System Platform | Information)
J Constraint Optimization
; ; Optimization Problem
Dea(X:;?ael I\;I;\;SSGS (Find arrival times that maximize the
y chance of deadline misses)
Constraint
Programming
(CP)
NV
OUTPUT
Solutions
Stress Test Cases (Task arrival times likely to
lead to deadline misses)
| —_
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Challenges and Solutions

ST

« Scalability problem: Constraint programming (e.g.,
IBM CPLEX) cannot handle such large input spaces
(CPU, memory)

« Solution: Combine metaheuristic search and
constraint programming

— metaheuristic search identifies high risk regions in
the input space

— constraint programming finds provably worst-case
schedules within these (limited) regions

— Achieve (nearly) GA efficiency and CP
effectiveness
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Process and Technologies ST
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System Design Design Model (Time
and Concur_rency
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lead to deadline misses)
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Environment-Based Testing
of Soft Real-Time Systems

References:

« Z. Igbal et al., “Empirical Investigation of Search Algorithms for Environment Model-
Based Testing of Real-Time Embedded Software”, ACM ISSTA, 2012

« Z. Igbal et al., “Environment Modeling and Simulation for Automated Testing of Soft
Real-Time Embedded Software”, Software and System Modeling (Springer), 2014
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* Model-based system testing
— Independent test team
— Black-box

— Environment models

Environment Models

R

=)

Test oracle

Environment Test cases
Simulator
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Environment: Domain Model ST
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Environment: Behavioral Model ST
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Test Case Generation ST

» Test objectives: Reach “error” states (critical environment
states)

« Test Case: (1) Environment and (2) Simulation Configuration

— (1) Number of instances for each component in domain model,
e.g., number of items on conveying belt

— (2) Setting non-deterministic properties of the environment, e.g.,
speed of sorter’s left and right arms

» Oracle: Reaching an “error” state
* Metaheuristics: search for test cases getting to error state
* Fitness function

— Distance from error state

— Distance from satisfying guard conditions

— Time distance

— Time in “risky” states
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Stress Testing focused on
Concurrency Faults

Reference:

M. Shousha et al., "’A UML/MARTE Model Analysis Method for
Uncovering Scenarios Leading to Starvation and Deadlocks in

Concurrent Systems”, IEEE Transactions on Software Engineering
38(2), 2012
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Stress Testing of Distributed Systems

Reference:

V. Garousi et al., "Traffic-aware Stress Testing of Distributed Real-Time
Systems Based on UML Models using Genetic Algorithms”, Journal of
Systems and Software (Elsevier), 81(2), 2008
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General Pattern: Using Metaheuristics

payment terms

Provide customer

“include” “mclude”

llllll

Problem

Objective

Function

Search
Space

Search
Technigue

ST
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Search to optimize
objective function

Metaheuristics, .
constraint programming

Scalability: A small part
of the search space is
traversed

Model: Guidance to
worst case, high risk
scenarios across space

Reasonable modeling
effort based on
standards or extension

Heuristics: Extensive
empirical studies are
required
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Scalability
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Project examples ST

« Scalability is the most common verification challenge in
practice

« Testing closed-loop controllers
— Large input and configuration space

— Smart heuristics to avoid simulations (machine
learning)

« Schedulability analysis and stress testing
— Large space of possible arrival times
— Constraint programming cannot scale by itself
— CP was carefully combined with genetic algorithms
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Scalability: Lessons Learned

ST

« Scalability must be part of the problem definition and
solution from the start, not a refinement or an after-thought

« Meta-heuristic search, by necessity, has been an essential
part of the solutions, along with, in some cases, machine
learning, statistics, etc.

« Scalability often leads to solutions that offer “best
answers” within time constraints, but no guarantees

« Scalability analysis should be a component of every
research project — otherwise it is unlikely to be adopted in
practice

 How many papers research papers do include even a
minimal form of scalability analysis?
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Applicabllity
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Project examples ST

» Applicability requires to account for the domain and context

« Testing controllers
— Relies on Simulink only
— No additional modeling or complex translation

— Within domains, differences have huge implications in terms
of applicability (open versus closed loop controllers)

* Minimizing risks of CPU shortage

— Trade-off between between effective synchronisation and
CPU usage

— Trade-off achieved through multiple objective GA search and
appropriate decision tool

« Schedulability analysis and stress testing
— Near deadline misses must be identified
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Applicability: Lessons Learned

ST

In software engineering, and verification in particular,
just understanding the real problems in real contexts
IS difficult

 What are the inputs required by the proposed
technique?

 How does it fit in development practices?

 |s the output what engineers require to make
decisions?
* There is no unique solution to a problem as they tend

to be context dependent, but a context is rarely
unique and often representative of a domain
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Discussion
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Discussions
SIT

* Metaheuristic search
— Tends to be versatile, easy to tailor to a new problem
— Entails acceptable modeling requirements
— Can provide “best” answers at any time
— Scalable

But

— Not a proof, no certainty

— Though in practice (complex) models are not fully correct,
there is no certainty anyway

— Effectiveness of search guidance is key and must be
experimented and evaluated

— Models are key to provide adequate guidance
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« Constraint solvers (e.g., Comet, ILOG CPLEX, SICStus)
— Is there an efficient constraint model for the problem at hand?
— Can effective heuristics be found to order the search?

— Better if there is a match to a known standard problem, e.g., job
shop scheduling

— Tend to be strongly affected by small changes in the problem, e.g.,
allowing task pre-emption
— Often not scalable, e.g., memory
* Model checking
— Detailed operational models (e.g., state models), involving temporal
properties (e.g., CTL)
— Enough details to analyze statically or execute symbolically

— These modeling requirements are usually not realistic in actual
system development. State explosion problem.

— Originally designed for checking temporal properties through
reachability analysis, as opposed to explicit timing properties

— Often not scalable 04



Talk Summary ST

 Focus: Meta-heuristic Search to enable scalable
verification and testing.

« Scalability is the main challenge in practice.

* Drew lessons learned from example projects in
collaboration with industry, on real systems and in real
verification contexts.

 Results show that meta-heuristic search contributes to
mitigate the scalability problem.

* |t has shown to lead to applicable solutions in practice.
« Solutions are very context dependent.

It is usually combined with a variety of other
complementary techniques: system modeling,
constraint solving, machine learning, statistics.

95



SIT

securityandtrustiu

Scalable Software Testing and Verification
Through Heuristic Search and Optimization

Lionel Briand

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

GDR-GPL, Bordeaux, June 2015

i |
SVV lab: svv.lu e o)
SnT. www.securityandtrust.lu



