- Journées GDR GPL e ol

Englneerlng Scale: d. .,
Software and Dlstrlbmmn
for Tomorrow = World '

Francois Taiani -

(&:IRISA

. . . , \y
< YAl > .:., \ , g ..~ \ e =
e P.) ¥ n y [ls xv
S RUE Ji \ SIN N BN SN A ,
I3 ! V; h.» =\ /] I..,} m.—. -) 5wy / ,,.., n
. =¥ 9 i/ UWYMEFT G TIEN RALY A -
. : 'S ﬂ’/ .\.&.\W\ Y a,/h\\ MR VANLY b 1
- - s 4..,'\&@1\.?”.%.\"..-»\.. i..i. 2 ¥/
i\ A XA YR NS AV
- SO L4) & 27 \ a . 74 - ~//\» \h- .i’ ﬂ.v
. . ! Y- ¥ ..c.w.- 1\.,. ,ﬂ.u/ » 4
/ /A0 LY

As ol
r‘e

o
i®)
(©
=
O
>
)
n!
)
Q.
@
hU.:
O
©
e
©
©
)
| -
Q.
d!
)
| -
-
r—
O
—
| -
e
(7p)
()

|deal software artefact

A Distributed System Today ...

Standards
cebook twu%

External
developers

External services

foursquare

Geosocial app, est. 2009

Middleware ‘ mongoID

amazZon
web services™
3

45M Users

Today's distributed systems

'S

- sprawling, chaotic, complex, unmanageable?

Outline

m A call to arms: engineering large scale

m Examples of ways forward

F. Taiani

Outline

m A call to arms: engineering large scale

F. Taiani

Today's distributed systems

'S

- sprawling, chaotic, complex, unmanageable?

Google*
Microsoft*
HP/EDS®
OVH
Intel
SoftLayer
Akamai Technologies
Intel

Rackspac
1&1 Internet®
GoDaddy"*
Facebook
eBay*
The Planet
Amazon EC2
LeaseWeb
Intergenia (PlusServer/ServerdYou)
SBC Communications
Verizon
Time Warner Cable
HostEurope
AT&T
Peer 1/Serverbeach
iWeb

Estimates: How many servers? (2011)

60.00¢
50.0(

Sa IR LBIBI8 8 |8 |5

150.000 300.000

450.000

Sprawling

Sources:
Data Center Knowledge,

of 08/2011

Royal Pingdom, Netcraft as

Chart: VisionCloud.eu (CC-BY)

600.000 750.000

200.00C

Source: "How Many Servers Worldwide?", Mirko Lorenz, http://www.visioncloud.eu/content.php?s=191,324

http://www.google.com/about/datacenters/gallery/#/

one RPC request A

« 2065 individual mvoc;at.i)

« > 50 C-furictioris
* > 140 C++ classes ..

P

50

10

Source: [TKF2009]

Unmanageable?

180,000
160000 - M Globus client B org.apache.xerces |
: [org.apache.xml
140000 | 2> 1 creatlon: 4 requests, = org apache axis]
1 deStrUCt|On E org.apache.logd4j
120,000 |m org.apache.xpath T
N PrOjeCtiOn W.r.t. B org.apache.commons
o 100000 7~ @ com.ibm.wsdl]
s - stack depth M others
80,000 —+
- package
60,000
4 client : 1,544,734 local method call (sic)

o{ server : 6,466,652 local method calls (sic) [+time out]

T T
Lo (e 0] ~— <t N~
(o0 ™

Stack Depth

The Impact of Web Service Integration on Grid Performance. Taiani, Hiltunen, Schlichting, HPDC-14, 2005

ars technica U nmanageable?

ALL APPLE ASKARS BUSINESS GADGETS GAMING MICROSOFT OPEN SOURCE SCIE

NEWS GUIDES REVIEWS FUTURE OF CARS

) Gear & Gadgets ¥ Essential toys, tools, and hardware

Netflix never used its $1 million algorithm
due to engineering costs

By Casey Johnston |

Netflix awarded a $1 million prize to a developer team in 2009 for an
algorithm that increased the accuracy of the company's recommendation
engine by 10 percent. But today it doesn't use the million-dollar code, and
has no plans to implement it in the future, Netflix announced on its blog
Friday. The post goes on to explain why: a combination of too much
engineering effort for the results, and a shift from movie recommendations
to the "next level" of personalization causedpy,the transition of the
business from mailed DVDs to video streamina.

SUBSCI
DON'T
BANNE

ALL FOR LESS THAN
CLICK HERE TO

-

ars

ars technica Unmanageable?

APPLE ASK ARS BUSINESS GADGETS GAMING MICROSOFT OPEN SOURCE SCIE

GUIDES REVIEWS FUTURE OF CARS

) Gear & Gadgets ¥ Essential toys, tools, and hardware

Netflix never used its $1 million algorithm ARS TE(
due to engineering costs SUBSCI]

By Casey Johnston | D O N '-l

Netfixawg $1 million prize feloperte
algorithm that increased the accuracy of the compa |
engine by 10 percent. But today it doesn't use the : ALL FOR LEss THM
has no plans to |mplement itin the future, Netflix announced on its blog
E—— ~aamabination of too much
tOO much englneerlng EffOI’t movie recommendations
v OTpeTSUNanZanorT causeupoy,ag transition of the 13
business from mailed DVDs to video streamina. | &+ P

CLICK HERETO

NETELIY Camazon e

webservices™ Apache

Large Dynamic Complex
) Gear & Gadgets " Essential toys, tools, and hardware |
Netflix never used its $1 million algorithm ARS TEC
due to engineering costs SUBSC]

By Casey Johnston | Published April 13, 2012 4:25 PM D O N l'l

Netfixawd $1 million prize feloperte NNE

algorlthm t a Increase e accuracy 0 e Compa recommendation ..
engine by 10 percent. But today it doesn't use the : ALL FOR LESS THAN

has no plans to |mp|ement |t |n the future Netﬂlx announced on Its blog ...
: s sdosselaissubsa-aasslhination of too much CLICK HERE TO

movie recommendations
-y - oTa196 transition of the B LATEST TO
business from mailed DVDs to video streamlnq. ale A

Why is distribution hard?

® Information takes time to travel
- Some DS protocols inspired from general relativity

® Machines and networks fail
< If MTTF 4 years: 1M machines = 1 failure every 2 minutes

F. Taiani 15

Impossibility Results

Asynchronous system with crash failures
B Consensus impossible (even if only one node crashes)

B Consistency + Availability + Partition tol. Impossible

Consequences
B N crash prone machines not Turing complete

» Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson. "Impossibility of distributed consensus
with one faulty process." Journal of the ACM (JACM) 32.2 (1985): 374-382.

» Gilbert, Seth, and Nancy Lynch. "Brewer's conjecture and the feasibility of consistent, available,
partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59.

» Herlihy, Maurice, Sergio Rajsbaum, and Michel Raynal. "Computability in distributed computing: a
tutorial." ACM SIGACT News 43.3 (2012): 88-110. 16

Progress so far: Middleware

m Goal: "nice" programming abstractions
- Challenge: to hide or not to hide distribution?

Distributed Applications

Middleware

Network OS Network OS Network OS
Services Services Services

Kernel Kernel Kernel

Machine A
Machine C

Network

17

In Practice

PP
MW

Network OS
Services

Kernel

PP
MW

Network OS
Services

Kernel

F. Taiani

PP
MW

Network OS
Services

Kernel

18

Most of today's effort centred on
programming nodes

19

Alternative

Tomorrow's systems will require a
holistic approach.

20

The Holistic Challenge

m (Strong) consistency is very costly
- The one-entity metaphor only goes so far.

m Large scale: embrace an inconsistent world
- Co-existence of past and present in the same system
- Partial adaptation
- Emerging behaviour

m Challenges
- Programming Models
= Interoperability
- Safety
- Security

F. Taiani

21

Outline

m Examples of ways forward

F. Taiani

22

Exa m p I e 1 Lancaster EE3

University = °

Dionasys project (2014-2017) " chistera université

“BORDEAUX
m Target
|
- Large scale, heterogeneous systems Ui
> E.qg. loT + cloud + VANETSs + mobiles NEUCHATEL
® Aim “Ii
TECHNICAL

UNIVERSITY

= Principled holistic SE approach NIVERSIT

®m Tools
- Self-stabilizing overlays T _
. T
- Declarative language %%
85

< Components

F. Taiani

23

Example 2

Lancaster
University ¢ #

B Application of components + DSL to gossip protocols
= Whisper + GossipKit

Jelasity et al
[JMBO09]

« Lin S., Taiani F., Bertier M., Blair G. S., Kermarrec A.-M. (2011). Transparent componentisation: high-level
(re)configurable programming for evolving distributed systems. ACM SAC 11

» GossipKit: A Unified Component Framework for Gossip, Frangois Taiani, Shen Lin, Gordon S. Blair, IEEE
TSE, Feb. 2014

24

Gossip Protocols

m Historical Distributed System
- Deterministic with strong guarantees
- Does not scale well Oz

B Gossip (aka epidemic) Protocols

= Introduce some ‘chaos’
- Goal: system to converge to a desirable outcome

- But some nodes might be left out ’r

®m Trading determinism for
scalability & robustness

F. Taiani

Gossip Protocols (cont.)

® Principles @
- leverage rumour-like propagation of information —

= large applicability: aggregation, broadcast, clustering
- often composed to realised higher-level services

m Conceptually simple
= typically symmetric behaviour
- key notions of state, information flows, and decisions

® But implementation can be time consuming

- multithreading, distributed coordination, network
Intricacies, co-existence

F. Taiani

26

Applying Components to Gossip

B Component successfully applied to distributed systems
< industry: EJB, CCM, OSGi, SCA @
= research: Fractal, OpenCOM, FraSCAti

=< middleware Frameworks: GridKit, Rapidware, Ensembile,
Cactus, Open Overlays

m Clear structure, explicit dependencies [[' Hm'm}[']}

m Benefits

© promote reuse
© easily composable and configurable (SPL..)
© lend themselves to runtime reconfiguration

F. Taiani 27

The problem with components

® Drawbacks
® low intelligibility (where is the intent?)
® conceptual mismatch for developers focusing on behaviour
® high learning curve for unfamiliar frameworks

F. Taiani 28

Applying SDL to Gossip

B Spec. lang. and DSL: High-level per node description
- Lotos, Estelle, PLAN-P, Mace ...

® Macro-programming: system as one entity
- E.g. Kairos, Regiment, TinyDB, MIT-Proto
- centralised shared-memory parallel abstraction
- main program compiled into code for each node

m Benefits

© high level of abstraction (in particular for macro-prog)
© intelligible
© good conceptual match for developers looking at behaviour

F. Taiani 29

Behaviour rather than structure

recipe
cupboard

add(yohourt,1)

add(milk,2)
add(flour,3)
add(butter,1)

Can we build a hybrid approach that combines the
strengths of components & high-level languages?

[E—— e Gy

form putln(oven)
bake()

® Drawbacks
@ we loose the benefits of components (reuse, adaptation, ...)

F. Taiani 30

structure + behaviour = ?

- HD) =

encapsulation

orchestration

©® tangling behaviour © complex composition
& structure © tension structural

© ‘breaks’ encapsulation needs vs.

® tension flexibility vs. programmatic ones
scattering

F. Taiani 31

structure + behaviour = ?

7))
<

-

‘—|-
-y
D

2

)

uonelJedas

transparent componentisation

F. Taiani

32

Transparent Componentisation

© simple
behaviour © concise
© high-level
V.V synthesis
© modular
T © reusable

structure
@ © (re)configurable

B Separation of concern between behaviour / structure

m Developers can focus on high level logic

B Systems takes care of modularity, reuse, and evolution

F. Taiani 33

The WhispersKit Architecture

Gossip Developer

etamoae Configuration Description

F. Taiani 34

Configuration Description

GossipKit wiv)
[1 Control [] Forward 777} State I Cross-cut
ﬁrotocol m \
Module A

- Peer >
External Periodic Gossip Selection /?/7'[//
Application | Trigger >,
I -| State k/

Process
Network ‘

N /

® A component framework for epidemic protocols
- based on analysis of 30 gossip protocols
- event-based

A

< XML-based configuration for component composition
- targets abstraction, modularity, reuse, evolvability

F. Taiani 36

GossipKit Examples

[Reused

[Reused I Auto Generated

External
Application

Decision2 Decision1

[0 Reused [] Customised

Wireless broadcast

RPS

Decision
limit

[T Reused [Customised Anti - E n t ro py B0 Reused Il Auto Generated

Decis?on) i b2 Decision2
(synchronisation) | i

State
Process

Membership
Protocol (RPS)
b1

External

Application Decision1

T-Man SCAMP

The WhispersKit Architecture

Gossip Developer

. -
amewo
0de Configuration Description
nae Component Architectural Abstraction

OpenCom Component Framework

F. Taiani

38

Whispers C&

B macro-programming language for gossip protocols
- system as one entity

B primitives

protocol {..} // protocol block

every (time) {..} // periodic behaviours
wait (Event e type T) {..} // reactive behaviours
foreach (n in nodeSet) // distribution
synchronised {..} // pairwise data exchange
State state = new State[fields][size] ; // state decl.
state.field ; // get a column of data
state.add ([fields]) // add

state.remove (row ID) // remove
i.RandomStateCompress(...) // library call

F. Taiani 39

Whispers Example: RPS oY

RPS {
State sample = new State[Node:PeerID] [Size=5];
Node n, i;
every (5000) { // do the following every 5000 ms
foreach (n in AllNodes) { // for each node n
i=n.RandomPeerSelection(n.sample) [Size=1];
n.sample.add([n]);
i.RandomStateCompress (i.sample,n.sample) [Size=5];
n.RandomStateCompress (i.sample,n.sample) [Size=5];
} // end of foreach
} // end of every
} // end of RPS protocol block

Jelasity, M., Guerraoui, R., Kermarrec, A.-M., and van Steen, M. (2004). The peer sampling service:
experimental evaluation of unstructured gossip-based implementations. Middleware '04

F. Taiani 40

GossipKit Framework

Compilation

Reactive thread on receipt of a message

RPS {
State
Node n, i;
every (5000) (// do the followi

foreach (n in

= new State[Node:PeerID] [Size=5];

Periodic thread

- 1| every 5 seconds message push| |message reply
v v
2 Node neighbour = 5 | retrieve local_sample
RandomPeerSelection ¢
6 | reply local_sample
3 | retrieve local _sample —~
v —a
. 7 | extract remote_sample from message
4 |push local_sample to neighbour 1
RandomCompréss
8 (local_sample, remote_sample)
Periodic Random 5 7
Trigger Peer Selection| 2 Y
G1 + . 2 8 | Random Gossip
OSsIP 3 » State | » Compress (Reply)

ey i o1

TCP

Distributed Reconfiguration

B A developer describes new behaviour in Whispers.

B The platform uses component representation
- to compute minimal set of changes; alia
- to propagate and enact reconfiguration. & 9

[}Y

RPS (GetPee: Joi. (Pee: i 1. RPS (GetP Joi i
State[PeerID] [5] state; . . 2. State[PeerID] [5] state;
Node n; 3. Node n;
4 List<Node> neighbours; 4. List<Node> neighbours;
5 for(n in ALL_NODES) { 5. for(n in ALL NODES) {
6 for ;i) { 6. for (i) {
7 tate) [Size(1)]; 7. tate) [Size(1)];
8 for (Node i in neighbours) { 8. for (Node i in neighbours) {
9 n.RandomStateCompression (i.state, n.state) ; 9. n.RandomStateCompression (i.state, n.state);
10 } 10. ¥
11 sleep (5000) ; 11. sleep (5000) ;
m 12. 11}

Component Z Component
mapping Unbind C1 and S1 & mapping

Unload S1
@51 F1. 31 Replace C1 by C2 C2 F1. @
Net! S2 Replace Net1 by ietZ Net?2 S2

Component Configuration A ﬁ'g Component Configuration B

Distributed Reconfiguration

m Example: RPS — T-Simple (Ring) — T-Simple (Grid)

coarse grained fine grained

Figure 5.6: Initial ran- Figure 5.7: 5th rounds Figure 5.8: Ring con-
dom graph maintained since 1st reconfiguration structed at the 11th

by RPS round
Figure 5.9: Topology at the 20th Figure 5.10: Grid constructed at
round the 23rd round

F. Taiani

44

A0 A =
Conclusmn -

The worjd is dlstrlbuted the world is Iarge -

DJ,strlbutloan more than concatenatlarhr
| -)Fallures ahd uncertalntles iy <% ‘

“

u. -
Large-scale dlstrlbuted systemsgven more so -

s > Informatlon takes tlme to travel p.

e > 3 - ;' [,

Y (g " ‘? = o -

’ . - y .‘ »

Novel software englneerlng approache§ ne* ’ \"“

;- ~ -2 Away-from node- centn’ev@ g o ., o

D Hollstlc yet loosely Goup -approaches ideal -

.- ¥ o. ? . .‘. ¢

o W ..'. i I A

. e i) » : . 4

»
- -

Task Failures at Google

rod m preem‘ption other === machine failure
P machine shutdown === out of resources

non-prod m

0 1 2 3 4 5 6 7 8
Evictions per task-week

Figure 3: Task-eviction rates and causes for production and non-
production workloads. Data from August 1st 201 3.

m Source: Large-scale cluster management at Google with Borg
Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David
Oppenheimer, Eric Tune, John Wilkes

EuroSys'2015, Bordeaux, France (2015)

47

(Some) References

[TKF09] CosmOpen: Dynamic reverse-engineering on a budget
(journal version) Francois Taiani, Marc-Olivier Killijian, Jean-Charles
Fabre, SP&E, 39(18): (Dec. 2009) pp. 1467-1514 (48p.), doi:

[THSO05] The Impact of Web Service Integration on Grid
Performance Francois Taiani, Matti Hiltunen, Rick Schlichting, The 14th

IEEE International Symposium on High Performance Distributed
Computing (HPDC-14), 2005, pp.14-23 (10 p.), doi:

[FLP85] Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process.
Journal of the ACM (JACM) 32.2 (1985): 374-382.

[GL02] Gilbert, Seth, and Nancy Lynch. Brewer's conjecture and the
feasibility of consistent, available, partition-tolerant web services.
ACM SIGACT News 33.2 (2002): 51-59.

F. Taiani 48

(Some) References

[HRR12] Herlihy, Maurice, Sergio Rajsbaum, and Michel Raynal.
Computability in distributed computing: a tutorial. ACM SIGACT
News 43.3 (2012): 88-110.

[JMBO09] Mark Jelasity, Alberto Montresor, and Ozalp Babaoglu. 2009.
T-Man: Gossip-based fast overlay topology construction. Comput.
Netw. 53, 13 (August 2009), 2321-23309.

[LTBBK11] Lin S., Taiani F., Bertier M., Blair G. S., Kermarrec A.-M.
(2011). Transparent componentisation: high-level (re)configurable

programming for evolving distributed systems. ACM SAC ’11, pp.
203-208

[TLG14] GossipKit: A Unified Component Framework for Gossip
Francois Taiani, Shen Lin, Gordon S. Blair, IEEE TSE, vol 40, Issue 2
(Feb. 2014), pp. 123-136 (17p)doi:

F. Taiani 49

(Some) References

m [JGKO04] Jelasity, M., Guerraoui, R., Kermarrec, A.-M., and van Steen,
M. (2004). The peer sampling service: experimental evaluation of
unstructured gossip-based implementations. Middleware '04

F. Taiani

50

