
Journées GDR GPL

Engineering Scale:
Software and Distribution
for Tomorrow's World

François Taïani

Ideal software artefact
è  structured, predictable, open, evolvable 2

A Distributed System Today …

3

External services

Standards

Middleware

External
developers

45M Users

Geosocial app, est. 2009

F. Taiani

Today's distributed systems
è  sprawling, chaotic, complex, unmanageable?

F. Taiani 5

Outline

n A call to arms: engineering large scale

n Examples of ways forward

F. Taiani 6

Outline

n A call to arms: engineering large scale

n Examples of ways forward

F. Taiani

Today's distributed systems
è  sprawling, chaotic, complex, unmanageable?

Sprawling

Source: "How Many Servers Worldwide?", Mirko Lorenz, http://www.visioncloud.eu/content.php?s=191,324

9 http://www.google.com/about/datacenters/gallery/#/

Chaotic

Complex

10

one RPC request,
•  2065 individual invocations
•  > 50 C-functions
•  > 140 C++ classes

Portability

Interoperability

Transparency

…

S
ou

rc
e:

 [T
K

F2
00

9]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Stack Depth

C
al

ls

 org.apache.xerces
 org.apache.xml
 org.apache.axis
 org.apache.log4j
 org.apache.xpath
 org.apache.commons
 com.ibm.wsdl
others

Unmanageable?
n  Globus client

è 1 creation, 4 requests,
1 destruction

n  Projection w.r.t.
è stack depth
è package

The Impact of Web Service Integration on Grid Performance. Taïani, Hiltunen, Schlichting, HPDC-14, 2005

client : 1,544,734 local method call (sic)
server : 6,466,652 local method calls (sic) [+time out]

F. Taiani 12

Unmanageable?

F. Taiani 13

too much engineering effort

$1 million prize
recommendation

Unmanageable?

F. Taiani 14

too much engineering effort

$1 million prize
recommendation

Large Complex Dynamic

Why is distribution hard?
n  Information takes time to travel

è Some DS protocols inspired from general relativity

n  Machines and networks fail
è If MTTF 4 years: 1M machines à 1 failure every 2 minutes

F. Taiani 15

Impossibility Results
Asynchronous system with crash failures
n  Consensus impossible (even if only one node crashes)

n  Consistency + Availability + Partition tol. Impossible

Consequences

n  N crash prone machines not Turing complete

16

•  Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson. "Impossibility of distributed consensus
with one faulty process." Journal of the ACM (JACM) 32.2 (1985): 374-382.

•  Gilbert, Seth, and Nancy Lynch. "Brewer's conjecture and the feasibility of consistent, available,
partition-tolerant web services." ACM SIGACT News 33.2 (2002): 51-59.

•  Herlihy, Maurice, Sergio Rajsbaum, and Michel Raynal. "Computability in distributed computing: a
tutorial." ACM SIGACT News 43.3 (2012): 88-110.

17

Progress so far: Middleware
n  Goal: "nice" programming abstractions

è Challenge: to hide or not to hide distribution?

Network

Network OS
Services

Kernel Kernel Kernel

M
ac

hi
ne

 A

M
ac

hi
ne

 C

Network OS
Services

Network OS
Services

Middleware

Distributed Applications

In Practice

F. Taiani 18

Network OS
Services

MW

Kernel Kernel Kernel

Network OS
Services

Network OS
Services

App

MW MW

App App

Most of today's effort centred on
programming nodes

19

SE

SE SE

SE SE

Alternative Vision

20

Tomorrow's systems will require a
holistic approach.

node

node node

SE

The Holistic Challenge
n  (Strong) consistency is very costly

è The one-entity metaphor only goes so far.

n  Large scale: embrace an inconsistent world
è Co-existence of past and present in the same system
è Partial adaptation
è Emerging behaviour

n  Challenges
è Programming Models
è Interoperability
è Safety
è Security

F. Taiani 21

F. Taiani 22

Outline

n A call to arms: engineering large scale

n Examples of ways forward

Example 1
Dionasys project (2014-2017)
n  Target

è Large scale, heterogeneous systems
è E.g. IoT + cloud + VANETs + mobiles

n  Aim
è Principled holistic SE approach

n  Tools
è Self-stabilizing overlays
è Declarative language
è Components

F. Taiani 23

Je
la

si
ty

 e
t a

l
 [J

M
B

09
]

Example 2

n  Application of components + DSL to gossip protocols
è Whisper + GossipKit

24

Je
la

si
ty

 e
t a

l
 [J

M
B

09
]

•  Lin S., Taiani F., Bertier M., Blair G. S., Kermarrec A.-M. (2011). Transparent componentisation: high-level
(re)configurable programming for evolving distributed systems. ACM SAC ’11

•  GossipKit: A Unified Component Framework for Gossip, François Taïani, Shen Lin, Gordon S. Blair, IEEE
TSE, Feb. 2014

Gossip Protocols
n  Historical Distributed System

è Deterministic with strong guarantees
è Does not scale well

n  Gossip (aka epidemic) Protocols
è Introduce some ‘chaos’
è Goal: system to converge to a desirable outcome
è But some nodes might be left out

n  Trading determinism for
scalability & robustness

F. Taiani 25

F. Taiani 26

Gossip Protocols (cont.)
n  Principles

è leverage rumour-like propagation of information
è large applicability: aggregation, broadcast, clustering
è often composed to realised higher-level services

n  Conceptually simple
è typically symmetric behaviour
è key notions of state, information flows, and decisions

n  But implementation can be time consuming
è multithreading, distributed coordination, network

intricacies, co-existence

F. Taiani 27

Applying Components to Gossip
n  Component successfully applied to distributed systems

è industry: EJB, CCM, OSGi, SCA
è research: Fractal, OpenCOM, FraSCAti
è middleware Frameworks: GridKit, Rapidware, Ensemble,

Cactus, Open Overlays

n  Clear structure, explicit dependencies

n  Benefits
J promote reuse
J easily composable and configurable (SPL..)
J lend themselves to runtime reconfiguration

F. Taiani 28

n  Question: What cake is that? (Is it even a cake?) n  Drawbacks
L low intelligibility (where is the intent?)
L conceptual mismatch for developers focusing on behaviour
L high learning curve for unfamiliar frameworks

The problem with components

cook

recipe

bowl

oven

form

fridge cupboard

F. Taiani 29

Applying SDL to Gossip
n  Spec. lang. and DSL: High-level per node description

è Lotos, Estelle, PLAN-P, Mace …

n  Macro-programming: system as one entity
è E.g. Kairos, Regiment, TinyDB, MIT-Proto
è centralised shared-memory parallel abstraction
è main program compiled into code for each node

n  Benefits
J high level of abstraction (in particular for macro-prog)
J intelligible
J good conceptual match for developers looking at behaviour

bake

F. Taiani 30

cook

recipe

bowl

oven

form

fridge cupboard

Behaviour rather than structure

add(yohourt,1)
add(milk,2)
add(flour,3)
add(butter,1)
add(eggs,2)
add(soda)
bowl.mix()
bowl.pour(form)
form.putIn(oven)
bake()

Can we build a hybrid approach that combines the
strengths of components & high-level languages?

n  Drawbacks
L we loose the benefits of components (reuse, adaptation, …)

F. Taiani 31

structure + behaviour = ?

encapsulation orchestration

K  tangling behaviour
& structure

K  ‘breaks’ encapsulation
K  tension flexibility vs.

scattering

K  complex composition
K  tension structural

needs vs.
programmatic ones

bake bake

F. Taiani 32

structure + behaviour = ?

encapsulation orchestration

transparent componentisation

synthesis

separation

bake

bake bake

F. Taiani 33

synthesis

Transparent Componentisation

n  Separation of concern between behaviour / structure
n  Developers can focus on high level logic

n  Systems takes care of modularity, reuse, and evolution

behaviour
J  simple
J  concise
J  high-level

structure
J  modular
J  reusable
J  (re)configurable

bake

F. Taiani 34

The WhispersKit Architecture

bake

F. Taiani 35

The WhispersKit Architecture

bake

F. Taiani 36

GossipKit

n  A component framework for epidemic protocols
è based on analysis of 30 gossip protocols
è event-based
è XML-based configuration for component composition
è targets abstraction, modularity, reuse, evolvability

F. Taiani 37

GossipKit Examples

SCAMP

RPS

T-Man

Anti-Entropy

Wireless broadcast

F. Taiani 38

The WhispersKit Architecture

bake

F. Taiani 39

protocol {..} // protocol block
every (time) {..} // periodic behaviours
wait (Event e type T) {..} // reactive behaviours
foreach(n in nodeSet) // distribution
synchronised {..} // pairwise data exchange
State state = new State[fields][size] ; // state decl.
state.field ; // get a column of data
state.add([fields]) // add
state.remove(row_ID) // remove
i.RandomStateCompress(...) // library call

Whispers
n  macro-programming language for gossip protocols

è system as one entity

n  primitives

bake

F. Taiani 40

RPS {
 State sample = new State[Node:PeerID][Size=5];
 Node n, i;
 every (5000) { // do the following every 5000 ms
 foreach (n in AllNodes) { // for each node n
 i=n.RandomPeerSelection(n.sample)[Size=1];
 n.sample.add([n]);
 i.RandomStateCompress(i.sample,n.sample)[Size=5];
 n.RandomStateCompress(i.sample,n.sample)[Size=5];
 } // end of foreach
 } // end of every
} // end of RPS protocol block

Whispers Example: RPS
RPS {
 State sample = new State[Node:PeerID][Size=5];
 Node n, i;
 every (5000) { // do the following every 5000 ms
 foreach (n in AllNodes) { // for each node n
 i=n.RandomPeerSelection(n.sample)[Size=1];
 n.sample.add([n]);
 i.RandomStateCompress(i.sample,n.sample)[Size=5];
 n.RandomStateCompress(i.sample,n.sample)[Size=5];
 } // end of foreach
 } // end of every
} // end of RPS protocol block

bake

Jelasity, M., Guerraoui, R., Kermarrec, A.-M., and van Steen, M. (2004). The peer sampling service:
experimental evaluation of unstructured gossip-based implementations. Middleware ’04

F. Taiani 41

The WhispersKit Architecture

bake

F. Taiani 42

Compilation RPS {
 State sample = new State[Node:PeerID][Size=5];
 Node n, i;
 every (5000) { // do the following every 5000 ms
 foreach (n in AllNodes) { // for each node n
 i=n.RandomPeerSelection(n.sample)[Size=1];
 n.sample.add([n]);
 i.RandomStateCompress(i.sample,n.sample)[Size=5];
 n.RandomStateCompress(i.sample,n.sample)[Size=5];
 } // end of foreach
 } // end of every
} // end of RPS protocol block

bake

F. Taiani 43

Distributed Reconfiguration
n  A developer describes new behaviour in Whispers.
n  The platform uses component representation

è to compute minimal set of changes;
è to propagate and enact reconfiguration.

bake cook

F. Taiani 44

Distributed Reconfiguration
n  Example: RPS → T-Simple (Ring) → T-Simple (Grid)

coarse grained fine grained

Conclusion
n  The world is distributed, the world is large

n  Distribution is more than concatenation
è Failures and uncertainties

n  Large-scale distributed systems even more so
è Information takes time to travel

n  Novel software engineering approaches needed
è Away from node-centric view
è Holistic yet loosely coupled approaches ideal

F. Taiani 45

Thank you

F. Taiani 46

Task Failures at Google

n  Source: Large-scale cluster management at Google with Borg
Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David
Oppenheimer, Eric Tune, John Wilkes
EuroSys'2015, Bordeaux, France (2015)

47

prod
non-prod

0 1 2 3 4 5 6 7 8
Evictions per task-week

machine shutdown
other

out of resources
machine failurepreemption

Figure 3: Task-eviction rates and causes for production and non-
production workloads. Data from August 1st 2013.

these keep the 99%ile response time of the UI below 1 s
and the 95%ile of the Borglet polling interval below 10 s.

Several things make the Borg scheduler more scalable:
Score caching: Evaluating feasibility and scoring a ma-

chine is expensive, so Borg caches the scores until the prop-
erties of the machine or task change – e.g., a task on the ma-
chine terminates, an attribute is altered, or a task’s require-
ments change. Ignoring small changes in resource quantities
reduces cache invalidations.

Equivalence classes: Tasks in a Borg job usually have
identical requirements and constraints, so rather than deter-
mining feasibility for every pending task on every machine,
and scoring all the feasible machines, Borg only does fea-
sibility and scoring for one task per equivalence class – a
group of tasks with identical requirements.

Relaxed randomization: It is wasteful to calculate fea-
sibility and scores for all the machines in a large cell, so the
scheduler examines machines in a random order until it has
found “enough” feasible machines to score, and then selects
the best within that set. This reduces the amount of scoring
and cache invalidations needed when tasks enter and leave
the system, and speeds up assignment of tasks to machines.
Relaxed randomization is somewhat akin to the batch sam-
pling of Sparrow [65] while also handling priorities, preemp-
tions, heterogeneity and the costs of package installation.

In our experiments (§5), scheduling a cell’s entire work-
load from scratch typically took a few hundred seconds, but
did not finish after more than 3 days when the above tech-
niques were disabled. Normally, though, an online schedul-
ing pass over the pending queue completes in less than half
a second.

4. Availability
Failures are the norm in large scale systems [10, 11, 22].
Figure 3 provides a breakdown of task eviction causes in
15 sample cells. Applications that run on Borg are expected
to handle such events, using techniques such as replication,
storing persistent state in a distributed file system, and (if
appropriate) taking occasional checkpoints. Even so, we try
to mitigate the impact of these events. For example, Borg:
• automatically reschedules evicted tasks, on a new ma-

chine if necessary;
• reduces correlated failures by spreading tasks of a job

across failure domains such as machines, racks, and
power domains;

• limits the allowed rate of task disruptions and the number
of tasks from a job that can be simultaneously down

65 70 75 80 85 90 95 100
0

20

40

60

80

100

Compacted size [%]

P
e

rc
e

n
ta

g
e

 o
f

ce
lls

Figure 4: The effects of compaction. A CDF of the percentage of
original cell size achieved after compaction, across 15 cells.

during maintenance activities such as OS or machine
upgrades;

• uses declarative desired-state representations and idem-
potent mutating operations, so that a failed client can
harmlessly resubmit any forgotten requests;

• rate-limits finding new places for tasks from machines
that become unreachable, because it cannot distinguish
between large-scale machine failure and a network parti-
tion;

• avoids repeating task::machine pairings that cause task or
machine crashes; and

• recovers critical intermediate data written to local disk by
repeatedly re-running a logsaver task (§2.4), even if the
alloc it was attached to is terminated or moved to another
machine. Users can set how long the system keeps trying;
a few days is common.

A key design feature in Borg is that already-running tasks
continue to run even if the Borgmaster or a task’s Borglet
goes down. But keeping the master up is still important
because when it is down new jobs cannot be submitted
or existing ones updated, and tasks from failed machines
cannot be rescheduled.

Borgmaster uses a combination of techniques that enable
it to achieve 99.99% availability in practice: replication for
machine failures; admission control to avoid overload; and
deploying instances using simple, low-level tools to mini-
mize external dependencies. Each cell is independent of the
others to minimize the chance of correlated operator errors
and failure propagation. These goals, not scalability limita-
tions, are the primary argument against larger cells.

5. Utilization
One of Borg’s primary goals is to make efficient use of
Google’s fleet of machines, which represents a significant
financial investment: increasing utilization by a few percent-
age points can save millions of dollars. This section dis-
cusses and evaluates some of the policies and techniques that
Borg uses to do so.

(Some) References
n  [TKF09] CosmOpen: Dynamic reverse-engineering on a budget

(journal version) François Taïani, Marc-Olivier Killijian, Jean-Charles
Fabre, SP&E, 39(18): (Dec. 2009) pp. 1467-1514 (48p.), doi:
http://dx.doi.org/10.1002/spe.943.

n  [THS05] The Impact of Web Service Integration on Grid
Performance François Taïani, Matti Hiltunen, Rick Schlichting, The 14th
IEEE International Symposium on High Performance Distributed
Computing (HPDC-14), 2005, pp.14-23 (10 p.), doi:
http://doi.ieeecomputersociety.org/10.1109/HPDC.2005.1520929.

n  [FLP85] Fischer, Michael J., Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process.
Journal of the ACM (JACM) 32.2 (1985): 374-382.

n  [GL02] Gilbert, Seth, and Nancy Lynch. Brewer's conjecture and the
feasibility of consistent, available, partition-tolerant web services.
ACM SIGACT News 33.2 (2002): 51-59.

F. Taiani 48

(Some) References
n  [HRR12] Herlihy, Maurice, Sergio Rajsbaum, and Michel Raynal.

Computability in distributed computing: a tutorial. ACM SIGACT
News 43.3 (2012): 88-110.

n  [JMB09] Mark Jelasity, Alberto Montresor, and Ozalp Babaoglu. 2009.
T-Man: Gossip-based fast overlay topology construction. Comput.
Netw. 53, 13 (August 2009), 2321-2339.

n  [LTBBK11] Lin S., Taiani F., Bertier M., Blair G. S., Kermarrec A.-M.
(2011). Transparent componentisation: high-level (re)configurable
programming for evolving distributed systems. ACM SAC ’11, pp.
203–208

n  [TLG14] GossipKit: A Unified Component Framework for Gossip
François Taïani, Shen Lin, Gordon S. Blair, IEEE TSE, vol 40, Issue 2
(Feb. 2014), pp. 123-136 (17p)doi:
http://dx.doi.org/10.1109/TSE.2013.50.

F. Taiani 49

(Some) References
n  [JGK04] Jelasity, M., Guerraoui, R., Kermarrec, A.-M., and van Steen,

M. (2004). The peer sampling service: experimental evaluation of
unstructured gossip-based implementations. Middleware ’04

F. Taiani 50

