

Engine

Improving Reuse of Tools by means of Model Migrations
Paola Vallejo, Mickaël Kerboeuf, Jean-Philippe Babau
Univ. Bretagne-Occidentale, Lab-STICC, Brest, France

 Context :
 Legacy code of a dedicated tool handling domain specific data
 gathers valuable expertise. However, in many cases, this code must
 be rewritten in order to make it apply to semantically equivalent
 but incompatible data. This update can be complex and error-
 prone.
 How to improve the reuse of legacy tools?

 Approach : Automatic adaptation of models, instead of rewriting or
 adapting the tool itself
 Based on co-evolution operators (rename, remove, flatten, hide, etc.).
 Refactoring at metamodel-level.
 Migration round-trip at model-level.
 - Graph based model semantics.
 - Asymmetrical onward and reverse migrations.
 - Tool characterized by a dependency graph.

 Publications:
 J.-P. Babau and M. Kerboeuf. Domain Specific Language Modeling Facilities. In ME@MoDELS, pages 1–6, 2011.
 M. Kerboeuf and J.-P. Babau. A dsml for reversible transformations. In Proceedings of the 11th OOPSLA Workshop on Domain-Specific Modeling, pages 1–6, 2011.
 M. Kerboeuf, P. Vallejo, and J.-P. Babau. Formal framework of recontextualization by means of dependency graphs. Research report, Lab-STICC UBO CACS MOCS, 2015.
 P. Vallejo, M. Kerboeuf, and J.-P. Babau. Specification of a legacy tool by means of a dependency graph to improve its reusability. In ME@MoDELS, pages 80–87, 2013.
 P. Vallejo, M. Kerboeuf, and J.-P. Babau. Adaptable model migrations. In MODELSWARD 2015 - Proceedings of the 3rd International Conference on Model-Driven
 Engineering and Software Development, 2015.

ic1

2
v

r3

r2

ia1

r1

1

x

yic2

n
r3

n

v

ib1

i instance #i

3 scalar value

referencer

attribute
a

: B
v = 2

r3

r2
: A

v = 1

: C
n = x

: C
c = y

r3
r1

input model

Tool

tool output model

ic1 ic2

dependency graph

ic3
ib1

ic1

ic2

r1_r3

ib1 ic3

r1_r3

model model graph

r1_r3

Model graph: Notation:Dependency graph

Refactor

1

3

Migrate

Co-evolution

WorkflowConformanceMetamodel Customization

Notation:

Compare

2

ic1ia1

r1_r3

1

ic2

v

Tool

4

ic1 ic2ic3

ic3ia1

1v

Dependency

Tool Metamodel

Migrated model

Processed model

* CA

D
v : int

r1_r3

r1_r3

r1_r3

5

Expected Tool Metamodel

* CA

D
v : int

r1_r3

Legacy tool domainApplication domain

B

: B
v = 2

r3

*

C0..1

r3

r2

A

r2

*

D
v : int

r1

: A
v = 1

: C
 n = x

: C
 n = y

r3
r1

ib1 ic1

2
v

r3

r2

ia1

r1

1

x

yic2

n
r3

n

v

: B
v = 2

r2
: A

v = 1
r3r1

Application Metamodel

Initial model

Reversed model

Round-trip and Example:

Log

 ReverseMigrate

 hide B ;
 C { remove n } ;

Refactoring

 ia1 { remove r1; add r1_r3 to ic1; add r1_r3 to ic2; } ;
 remove ib1 { } ;
 ic1 { remove n; remove x; } ;
 ic2 { remove n; remove y; } ;

n = x

SpecificationModel

: C
ib1 ic3

2
v

r3

r2

ia1

r1

1

x
n

v

Migration

n : String

ic3 y
n

Démonstrations et Posters

153

