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     Context :
     Legacy code of a dedicated tool handling domain specific data 
     gathers valuable expertise. However, in many cases, this code must
     be rewritten in order to make it apply to semantically equivalent  
     but incompatible data. This update can be complex and error-
     prone.  
     How to improve the reuse  of legacy tools?

     Approach : Automatic adaptation of models, instead of rewriting or 
         adapting the tool itself
        Based on co-evolution operators (rename, remove, flatten, hide, etc.).
        Refactoring at metamodel-level.
        Migration round-trip at model-level. 
         - Graph based model semantics.
         - Asymmetrical onward and reverse migrations.
         - Tool characterized by a dependency graph.
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Round-trip and Example:
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  hide B ; 
  C { remove n } ; 

Refactoring

 ia1 { remove r1; add r1_r3 to ic1; add r1_r3 to ic2; } ;
 remove ib1 { } ;
 ic1 { remove n; remove x; } ;
 ic2 { remove n; remove y; } ;

n = x
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