
SQLite au peigne fin
!

Pascal Cuoq
John Regehr

Feasible states for a
system we care about

Feasible states for a
system we care about

Some execution
reaches this state

No execution
reaches this state

Initial states

Feasible states

Figuring out whether an arbitrary
state is feasible is very, very hard

Feasible states

Feasible states

Erroneous
states

Feasible states

Erroneous
states

BUG!!!

Verification

Verification

Verification

Alarm

Alarm

Alarm

Alarm

Alarm

Alarm

Testing

Testing

Testing

Testing

Testing

AHA!

• Testing is unsatisfying: no guarantees
– In practice, testing almost invariably misses

critical bugs
– Even microprocessors and rockets ship with

nasty bugs

However, it can make sense to do testing
first, verification second
• legacy security-critical code probably

comes with some tests
• Finding bugs during verification makes

verification more difficult
–We want verification to be about proving

absence of bugs, not about finding bugs

Restricted mode of Frama-C's value analysis
• enforces abstract states that model single

concrete states
• no join
• initiated for Csmith testing
• continued at TrustInSoft with CII funding
• tis-interpreter lets us detect a wide

variety of very subtle C undefined
behaviors as a side effect of normal
testing

An undefined behavior in C and C++ (and other
languages) is a program error that
– is not caught by the compiler or runtime library
– is assumed to not happen by the compiler
– invalidates all guarantees made by the compiler
Basically all non-trivial C and C++ programs
execute undefined behaviors
– Thus, according to the standards, almost all C

and C++ programs are meaningless
– Including, for example, most of the SPEC CPU

2006 benchmarks

• This function executes undefined
behavior:

!
int foo(int x, int y) {
 return (x + y) >> 32;
}

• This function executes undefined
behavior:

!
int foo(int x, int y) {
 return (x + y) >> 32;
}

Latest version of LLVM
emits:
!
foo:
 retq

• Most safety-critical and security critical
software is written in C and C++

• Undefined behavior is a huge problem
– Responsible for a large fraction of major

security problems over the last 20 years
!

• The solution is tools
– Static analysis to find bugs at compile time
– Dynamic analysis to find bugs at runtime

!
!
!

All UBs

UBs found by
 tis-interpreter

UBs found by
ASan or Valgrind

UBs found
by UBSan

varargs bugs

comparisons of
unrelated pointers

uses (not dereferences)
of invalid pointers signed integer

overflows
OOB array accesses

violations of
strict aliasing

infinite loops
w/o side effects

double frees,
uses after
free unsequenced

variable accesses

We’ve been applying tis-interpreter to widely
used, security-critical open source libraries
• Crypto
– PolarSSL, OpenSSL, LibreSSL, s2n

• File processing
– libjpeg, libpng, libwebp, bzip, zlib

• Databases
– SQLite

Where do we get test cases?
• Test suites
• afl-fuzz

SQLite
• Open source embedded SQL database
• ~113,000 lines of C
• Most widely deployed SQL database

(probably by multiple orders of magnitude)
• One of the most widely deployed software

packages period
– Most phones, web browser instances, smart

TVs, set top boxes contain at least one
instance

• https://www.sqlite.org

https://www.sqlite.org
https://www.sqlite.org
https://www.sqlite.org

SQLite in Firefox

26

SQLite is extensively tested
• Test cases written by hand
– 100% MC/DC coverage!
– Every entry and exit point is invoked
– Every decision takes every outcome
– Every condition in a decision takes every outcome
– Every condition in a decision is shown to

independently affect the outcome of the decision
• Test cases generated automatically by fuzzers
• https://www.sqlite.org/testing.html
• Executions are examined by checking tools

such as Valgrind
Are there problems in SQLite left for us to find?

https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html

memcpy(b1, b2, s) must be passed buffers
b1 and b2 valid for the full length s even if
they differ early.

http://trust-in-soft.com/memcmp-requires-pointers-to-fully-valid-buffers/

!
• SQLite sometimes uses the pattern:
 memcmp(e, "unix-excl", 10)
!
where e's validity can be shorter than 10

http://trust-in-soft.com/memcmp-requires-pointers-to-fully-valid-buffers/

Library functions such as memcpy() and
memset() assume that their pointer
arguments are non-null
• SQLite sometimes calls these functions

with null arguments
!
void foo(char *p1, char *p2, size_t n) {
 memcpy(p1, p2, n);
 if (!p1)
 error_handler();
}

Library functions such as memcpy() and
memset() assume that their pointer
arguments are non-null
• SQLite sometimes calls these functions

with null arguments
!
void foo(char *p1, char *p2, size_t n) {
 memcpy(p1, p2, n);
 if (!p1)
 error_handler();
}

Code generated by
GCC:
!
foo:
 jmp memcpy

int sqlite3_config(int op, ...) {
 …
 var1 = va_arg(ap, void *);
 var2 = va_arg(ap, void *);
 …
}
!
OK to call like this?
!
void *pLog = …;
sqlite3_config(CONFIG_LOG, 0, pLog);

int sqlite3_config(int op, ...) {
 …
 var1 = va_arg(ap, void *);
 var2 = va_arg(ap, void *);
 …
}
!
Correct call:
!
sqlite3_config(CONFIG_LOG, (void *)0, pLog);
!
How can this kind of bug go undetected?

int sqlite3_config(int op, ...) {
 …
 var1 = va_arg(ap, void *);
 var2 = va_arg(ap, void *);
 …
}
!
Correct call:
!
sqlite3_config(CONFIG_LOG, (void *)0, pLog);
!
How can this kind of bug go undetected?

On x86:
• int and pointer are the same size
• Integer 0 and null pointer have the same

representation
• No problem!
On x86-64:
• int has size 4 and pointer has size 8
• First six integer arguments are passed in

registers
• No problem!
On other platforms, memory corruption is
possible

• Many occurrences of integer zero values
being passed as null pointers

• Also, a few other bugs such as more
arguments being popped than pushed

• Are varargs bugs common?
–We don’t know
– Bugs in calls to variadic standard library

functions are caught by custom compiler
warnings

– Bugs in user-written variadic code get no
checking whatsoever

C does not initialize automatic variables.
Valgrind tracks initialization at bit level,
allowing detection of accesses to
uninitialized storage
• But Valgrind analyzes compiled code
• The compiler can hide errors, for example

by reusing stack memory that was already
initialized

tis-interpreter always finds these bugs
– Including several in SQLite

int dummy;
some sort of loop {
 ...
 // we don't care about function()’s
 // return value (but its other
 // callers might)
 dummy += function();
 ...
}
// dummy is not used again

A pointer in C becomes illegal to use once
the storage to which it points is freed
• We found many locations where SQLite

frees memory and then continues to use
the invalid pointers

!
req1_malloc02_alignment(p, z);
sqlite3_realloc(z, 0);
th3testCheckTrue(p, z!=0);

Creating a pointer ahead of or more than one
element past the end of a block of storage is
illegal in C
!
int a[10];
int *p1 = &a[-1]; // illegal
int *p2 = &a[9]; // pointer to last element
int *p3 = &a[10]; // OK (one past the end)
int *p4 = &a[11]; // illegal

SQLite computed illegal pointers…
• On purpose: systematic use of pointers to

array[-1]
– 1-based array indexing w/o wasting RAM

• Accidentally, as part of input validation
– This error is seen in almost all C code

Results testing SQLite using tis-interpreter:
!
• Many bugs fixed
• Developers are now more aware of

subtleties of the C standard
– They had been writing “1990s C code” which

ignores many undefined behaviors

tis-interpreter improvements:
!
• Recursion
• va_list
• Built-in support for many standard functions
• especially file access: open(), read(), …
• invalid pointer arithmetic (pinpoint problem)

Missing from tis-interpreter to support
SQLite better:
• mmap()
• mkdir()
• fcntl()
Missing to support other packages:
• setjmp() / longjmp()
• Intrinsics and inline assembly

• The C language is full of subtle undefined
behaviors
– Some are directly harmful
– Others matter because compilers assume they

will not happen

• tis-interpreter uses existing test cases to
find these bugs

• Testing using tis-interpreter is a very
useful prelude to formal verification

• tis-interpreter is open source
– http://trust-in-soft.com/tis-interpreter/

http://trust-in-soft.com/tis-interpreter/
http://trust-in-soft.com/tis-interpreter/

