
GDR-GPL 17 – National Days – 13 June 20171/45

Arnaud Gotlieb
Simula Research Laboratory
Lysaker, Norway

Testing Robotic Systems: A New Battlefield!

2

Software Validation and Verification

The Certus Centre

www.certus-sfi.no

Cisco Systems Norway

Cancer Registry of Norway

ABB Robotics

Kongsberg Maritime

http://www.certus-sfi.no/

4

Industrial Robotics Evolves Very Fast!

Industrial robots are now complex cyber-physical systems
(motion control and perception systems, multi-robots sync.,
remote control, Inter-connected for predictive maintenance, …)

They are used to perform safety-critical tasks in complete autonomy
(high-voltage component, on-demand painting with color/brush change, ..)

And to collaborate with human co-workers

5

Testing Robotic Systems is Crucial and Challenging

• The validation of industrial robots still involve too much human labour

• “Hurry-up, the robots are uncaged!”: Failures are not anymore handled using fences

• Robot behaviours evolve with changing working conditions

• Today, industrial robots can be taught by-imitation.
Tomorrow, they will learn by themselves More

automation
in testing

More
diversity in

testing More
efficiency in

testing

From…. To…

How Software Development of Industrial Robots Has Evolved...

Single-core, single application system Multi-core, complex distributed system

All source code maintained by a small team
located at the same place

Subsystems developed by distinct teams
located at distinct places in the world

Manual system testing only handled in a
single place, on actual robots

Automated software testing handled in a
continuous integration process

A Typical Cycle of Continuous Integration:

Developer
commit

Software
building

Software
Deployment

Software
Testing

Developer
feedback

Test Case Selection/Generation

Test Suite Reduction

Test Case Prioritization

Test Execution Scheduling

Timeline

+ Test Execution

8

2. Test Suite
Reduction

3. Test
Execution

Scheduling

4. Test Case
Prioritization

1. Automatic
Test Case

Generation

Our Focus : Artificial Intelligence for Testing of Robotic Systems

Constraint Modelling

Constraint-based SchedulingReinforcement Learning

Global Constraints

99

1. Automatic Test Case Generation

Constraint Modelling

2. Test Suite
Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1.
Automatic
Test Case

Generation

10

A Typical Robot Painting Scenario

SetBrush 1 at x:=300

Need to call 4
physical
subprocesses

Paint Valve=On at x:=50

Set Atom=15000 at x:=180 (Air flow, L/min)

Set Shape=7500 at x:=250 (Air flow, L/min)

Start of
‘brush’

X=300ms

Set Fluid=100 at x:=100 (Pump, mL/min)

Crucial test objective:
to validate that the four physical outputs
are triggered on expected time

Main issue:
Can we generate automatically test scenarios
and check results using sensors?

Current practice:

11

Test oracle

tt

I/O-

1
tt I/0-2 tt

I/O-

3

295 75 120 150 205 75

579 500 500 175 585 150

879 75 780 150 881 75

1195 0 1130 0 1231 0

Test sequence

ti Bi

300 1

600 2

900 1

1200 0

Test results

tt

I/O-

1
tt I/0-2 tt

I/O-

3

294 75 121 150 205 75

579 500 501 175 585 150

880 75 792 150 880 75

1197 0 1131 0 1232 0

Compare

Constraint Model of IPS

Issues for deployment:

1. Can we control the solving time wrt
the test execution time?

2. Is this Constraint-based Testing
approach interesting to find bugs?

3. Can we ensure enough diversity
in the generated test scenarii?

12

Industrial Deployment
[Mossige et al. CP’14, IST’15]

Constraint model: 2KLOC of Prolog, finite domains constraint solver
(clpfd + home-made heuristics)

• Time-aware constraint-based optimization

• Integrated throug ABB’s Continuous Integration process

• Constraint model is solved ~15 times per day

E: Efficiency factor

ts : Solving time

tN : Test exec. time

E = SeqLen / (ts + tN)

SeqLen =
50
100
150
200
250
300

Size of the
Brush Table=

10
15
20

But, still working on maximizing the diversity among test scenarii

- It founds 5 re-introduced (already corrected) critical bugs
- It founds dozens of (non-critical) new bugs

1313

2. Test Suite Reduction

2. Test
Suite

Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1. Automatic
Test Case

Generation

Global Constraints

14

Test Suite Reduction: the core problem

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimally Reduced
Test Suite

Fi: Features
TC: Test Cases

Similar to the Vertex
Cover problem in a

bipartite graph
NP-hard
problem!

15

Test Suite Reduction: existing approaches

Minimize 𝑖=1..6 𝑥𝑖
(minimize the number of test cases)

subject to
𝑥1+ 𝑥2 + 𝑥6 ≥ 1
𝑥3 + 𝑥4 ≥ 1
𝑥2 + 𝑥5 ≥ 1

(cover every feature. at least once)

- Exact methods: Integer Linear Programming
[Hsu Orso ICSE 2009, Campos Abreu QSIC 2013,…]

- Approximation algorithms (greedy, search-based methods)
[Harrold et al. TOSEM 1993, …]

- Constraint Programming with global constraints [Gotlieb et al. ISSTA 2014, AI Magazine 2016, …]

F = Set of reqs, Current = Ø
while(Current ǂ F)

Select a test case that covers the most uncovered features ;
Add covered features to Current ;

return Current

1616

Constraint Programming (CP)

Domain
Filtering

Variable
Labeling

Constraint
Propagation

• Routinely used in Validation & Verification,
CP handles hundreds of thousands
of constraints

• CP is versatile: user-defined constraints, dedicated solvers,
programming search heuristics but it is not a silver bullet
(developing efficient CP models requires expertise)

 Global constraints: relations over a non-fixed number
of variables, implementing dedicated filtering algorithms

17

The nvalue global constraint
[Pachet Roy 1999, Beldiceanu 01]

nvalue(N, V)

Where:

N is a finite-domain variable

V = [V1, …, Vk] is a vector of variables

N= 𝑐𝑎𝑟𝑑(Vi 𝑖 𝑖𝑛 1. . 𝑘)
nvalue(N, V) holds iff

nvalue(N, [3, 1, 3]) entails N = 2
nvalue(3, [X1, X2]) fails
nvalue(1, [X1, X2, X3]) entails X1 = X2 = X3

N in 1..2, nvalue(N, [4, 7, X3]) entails X3 in {4,7}, N=2

18

Optimally Reduced
Test Suite

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
nvalue(MaxNvalue, [F1, F2, F3])
Minimize(MaxNvalue)

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimal Test Suite Reduction with nvalue

However,
only F1, F2, F3

are available
for labeling!

19

The global_cardinality constraint (gcc)
[Regin AAAI’96]

gcc(T, d, V)

Where

T = [T1, …, TN] is a vector of N variables

d = [d1, …., dk] is a vector of k values

V = [V1, …, Vk] is a vector of k variables

∀𝑖 𝑖𝑛 1. . 𝑘,
Vi= card({j | Tj=di})

gcc(T, d, V) holds iff

Filtering algorithms for gcc are based on max flow computations

20

Example

gcc([F1, F2, F3], [1,2,3,4,5,6], [V1,V2,V3,V4,V5,V6])
means that:

In the solution-set,
TC1 is used to cover exactly V1 features in [F1, F2, F3]
TC2 ‘’ V2 ‘’
TC3 ‘’ V3 ‘’
...

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

Here, V1=1, V2=1, V3=1, V4=0, V5=0, V6=0 is a feasible solution

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
V1 in {0, 1}, V2 in {0, 1, 2}, V3 in {0, 1}, V4 in {0, 1}, V5 in {0, 1}, V6 in {0, 1}

But, not an optimal one!

21

F1 in {1, 2, 6}, F2 in {3, 4}, F3 in {2, 5}
gcc([F1, F2, F3], [1,2,3,4,5,6], [V1, V2, V3, V4, V5, V6])
nvalue(MaxNvalue, [F1, F2, F3])
Minimize(MaxNvalue)

F1

F2

F3

TC1

TC2

TC3

TC4

TC5

TC6

CP model using gcc and nvalue

22

Model pre-processing

F1 in {1, 2, 6}  F1 = 2
as cov(TC1)  cov(TC2) and cov(TC6)  cov(TC2)
withdraw TC1 and TC6

F1

F2

F3

TC1

TC 2

TC 3

TC4

TC5

TC6

F3 is covered  withdraw TC5

F2 in {3,4}  e.g., F2 = 3, withdraw TC4

Pre-processing rules can be expressed once
and then applied iteratively

23

Other criteria to minimize

F1

F2

F3

TC1

TC4

TC5

TC6

Feature coverage
is always a prerequiste

Optimally Reduced
Test Suite

Execution time!

TC2

TC3

1 min

5 min

3 min

3 min

1 min

1 min

24

Other criteria to minimize

F1

F2

F3

TC1

TC4

TC5

TC6

Feature coverage
is always a prerequiste

Fault revealing capabilities!

TC2

TC3

High priority

Low priority

High priority

Low priority

Low priority

Low priority

25

Proposed approaches

1. Actual multi-objectives optimization with search-based algorithms
(Pareto Front) [Wang et al. JSS'15]

Aggregated cost function using weights for each objective

2. Cost-based single-objective constrained optimization
Based on a CP model with global constraints

Approximate solutions
No constraint model!

Exact solutions
Constrained optimization model!

26

Optimal Test Suite Reduction with Costs
[Gotlieb et al. ICSOFT-EA’16]

F1,..,Fn: Features
t1,..,tm: Test cases
c1,..,cm: Unit cost for each test case

This cost value aggregates different criteria (e.g., execution time, …)

Minimize TotalCost
s.t

gcc([F1, …, Fn], [t1, …, tm], [O1, …, Om])
for i=1 to m do Bi = (Oi > 0)
scalar_product([B1, …, Bm], [c1, …, cm], TotalCost)

where scalar_product encodes B1*c1 + .. + Bm*cm = TotalCost

27

Optimized
(reduced)
test suite

TITAN [Marijan, Gotlieb ICST’17]

Unoptimized
test suite

Diagnostic views, feature coverage

Variability model to
describe a product line

IRB 52

IRB 5400-22 IRB 580 IRB 540

IRB 5400-12

IRB 5500

IRB 58Rail sys

28

Model comparison on random instances (uniform costs)
(Reduced Test Suite percentage in 30sec of search)

2929

Comparison with CPLEX, MiniSAT, Greedy (uniform costs)
(Reduced Test Suite percentage in 60 sec)

But, less encouraging results when

non-uniform costs are used!

(CPLEX always better than TITAN)

3030

3. Test Execution Scheduling

2. Test Suite
Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1. Automatic
Test Case

Generation

Constraint-based Scheduling

3131

Test Execution Scheduling

Test Cases

with distinct

characteristics

Test Agents

(Robots)

with limited

(time or resources)

capacity

Assignment of Test Cases

to Agents which

1. Satisfies capacity constraints

2. Optimize some cost function

Schedule

Additionally, there can be some

shared global resources among test cases

(e.g., flow meter, oscilloscope, camera, …)

32

Constraint Models for Test Scheduling
10..30 code changes per Day

Test Cases Repository:
~10,000 Test Cases (TC)
~25 distinct Test Robots
Diverse tested features

Test Cases:
- duration
[- priority]
[- history]

Constraint-based scheduling Models

1. Greedy approach

2. Constraint-based scheduling

3. Advanced scheduling based on

global constraints / Labelling heuristics

SIMULA’s SWMOD

1 Deployed at ABB / « good enough »

2 Evaluated / Needs Improvements

3 Evaluation in progress /
Not yet deployed

T2, T5,
T34 T45,

T55

T4,
T56,
T67

T7,
T23

T3, T6,
T45,
T78

ABB

33

Formally speaking

Variables:
- t: a set of Test Cases to schedule with their (known) duration
- r: a set of (shareable) resources
- m: a set of Test Agents and a relation f: t m

Constraints:
- Each Test Case must be executed (exactly) once, without possible preemption ;
- None shared resource is used by two Test Cases at the same time ;
- f has to be satisfied, ;
- At most card(m) Test Cases can be executed at any moment ;

Function to optimize:
- Timespan: the overall duration of the schedule

(in order to minimize the round-trip time) NP-hard problem!

34

r1

m3

m2

m1

A realistic

example

35

The cumulative global constraint [Aggoun & Beldiceanu AAAI’93]

cumulative(t, d, r, m)

Where

t = (t1, …, tN) is a vector of tasks, each ti in ESTi .. LSTi

d = (d1, …., dN) is a vector of task duration

r = (r1, …, rN) is a vector of resource consumption rates

m is a scalar

𝑖=1

𝑁

𝑟𝑖 ≤ 𝑚

ti ≤ t ≤ ti + di

cumulative (t, d, r, m) holds iff

Filtering algorithms based on disjunctive reasoning

36

Time-Aware Test Execution Scheduling [Mossige et al. CP 2017]

cumulative((t1,..,t10), (d1,..,d10), (1, ..,1), 3),
M1,..,M6 in 1..3,
M7 = 1, M8 = 2, M9 = 3, M10 in {1,3},
(E2 ≤ S3 or E3 ≤ S2), (E2 ≤ S4 or E4 ≤ S2),
(E3 ≤ S4 or E4 ≤ S3),
max(MaxTime, (E1, …, E10)),
label(minimize(MaxTime), (S1,..,S10), (M1,..,M10))

An optimal solution:
S1 = 0, S2 = 4, S3 = 8, S4 = 0, S5 = 4, S6 = 7, S7 = 2, S8 = 9, S10 = 3,
M1 = 1, M2 = 1, M3 = 1, M4 = 2, M5 = 2, M6 = 2, M7 = 1, M8 = 2, M9 = 3, M10 = 3
MaxTime = 11

37

Experimental results

But, how to handle priorities

and execution history ?

3838

4. Test Case Prioritization

2. Test Suite
Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1. Automatic
Test Case

Generation

Reinforcement Learning

3939

Motivation: Learning from previous test runs of the robot control systems

• Adapt testing to focus on the more error-prone parts of the tested system

• Adapt testing to the execution environment (available robots and devices, limited testing
time and resources, experiences from previous cycles in continuous integration)

4040

RETECS: Using Reinforcement Learning to prioritize test case execution

• Considering test case meta-data only (test verdicts, tested robots, execution time, ...)  lightweight method
• Reward function based on test verdicts from the previous CI-cycles  online ML
• No training, very limited memory of past executions  unsupervised ML

Implemented with distinct
memory models and

reward functions

4141

Does it learn?
3 Industrial data sets (1 year of CI cycles)
NAPFD: Normalized Average Percentage of Faults Detected

4242

Lessons Learned and
Further Work

43

Lessons learned

• Industrial Robotics is an interesting application field for automated software testing research

• More automation is highly desired by engineers in industrial robots testing.
Release better, release faster, release cheaper
It’s a highly competitive market!

• Adoption of (robust) AI techniques is possible provided that their benefice is demonstrated
on real settings. Validated on real robots.

• Adoption of AI techniques in industrial robotics testing is not easy
(don’t want to see emerging behaviors or non-deterministic behaviors, good-enough practices, higher
cognition for industrial robots is not yet a top-priority!)

A New Battlefield!

44

Further Work

• Automated Testing of Robot Synchronisation,
Multi-Robots interactions

• Human Perception of Robot Safety

• Testing Learning Robots

Thanks to:
Mats Carlsson (SICS, Sweden)
Dusica Marijan (SIMULA, Norway)
Hein Meling (U. of Stavanger, Norway)
Morten Mossige (ABB Robotics, Norway)
Helge Spieker (SIMULA, Norway)

45

1. [Spieker et al. 2017] H. Spieker, A. Gotlieb, D. Marijan and M. Mossige
Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration
In Proc. of 26th Int. Symp. on Soft. Testing and Analysis (ISSTA-17), Santa Barbara, USA, July 2017.

2. [Gotlieb Marijan 2017] A. Gotlieb and D. Marijan
Using Global Constraints to Automate Regression Testing AI Magazine 38, Spring, 2017.

3. [Marijan et al. 2017] D. Marijan, A. Gotlieb, M. Liaaen, S. Sen and C. Ieva
TITAN: Test Suite Optimization for Highly Configurable Software
In Int. Conf. on Soft. Testing, Verification and Validation (ICST-17), Tools Track, Tokyo, Japan, 2017.

4. [Mossige et al. 2017] M.Mossige, A. Gotlieb, H. Spieker, H. Meling, M. Carlsson
Time-aware Test Case Execution Scheduling for Cyber-Physical Systems
In Principles and Practice of Constraint Programming (CP-17) – Application Track, Melbourne, Australia, Aug. 2017

5. [Gotlieb et al., 2016] A. Gotlieb, M. Carlsson, D. Marijan and A. Petillon
A New Approach to Feature-based Test Suite Reduction in Software Product Line Testing
In 11th Int. Conf. on Software Engineering and Applications (ICSOFT-16), Lisbon, July 2016, Awarded Best Paper

6. [Mossige et al., 2015] M. Mossige, A. Gotlieb, and H. Meling.
Testing robot controllers using constraint programming and continuous integration.
Information and Software Technology, 57:169-185, Jan. 2015.

7. [Wang et al., 2015] S. Wang, S. Ali, and A. Gotlieb.
Cost-effective test suite minimization in product lines using search techniques.
Journal of Systems and Software 103: 370-391, 2015.

8. [Gotlieb et al., 2014] A. Gotlieb and D. Marijan.
Flower: Optimal test suite reduction as a network maximum flow.
In Proc. of Int. Symp. on Soft. Testing and Analysis (ISSTA-14), San José, CA, USA, Jul. 2014.

9. [Mossige et al., 2014] M. Mossige, A. Gotlieb, and H. Meling.
Using CP in automatic test generation for ABB robotics' paint control system.
In Principles and Practice of Constraint Programming (CP-14) – Awarded Best Application Paper, Lyon, Fr., Sep. 2014.

References

