
University of Luxembourg
Multilingual. Personalised. Connected.

Réparation Automatique des Logiciels: le Rêve et la Fantaisie
GDR GPL, 14 Juin 2021

Prof. Dr. Tegawendé F. BISSYANDE

Background: Education, Mobility, Positions

(1) Burkina Faso

(4) United States

(3) France

(5) Singapore

(6) Luxembourg

Born in 1985
High school diploma in 2004

(2) Morroco
2004-2006

« Classes Préparatoires »

Telecom Engineering degree / 2006-2009
PhD in Computer Science (Debugging Linux) / 2009-2013

@University of Bordeaux

Engineering Internship
(Demosaicing) 2008

@UC Santa Barbara

Research Associate / 2013-2016
Research Scientist / since 2016
@SnT, University of Luxembourg

Visiting PhD
Data mining – 2012
@Singapore Mgmt. Univ.

- Eiffel Excellence Scholarship for « Grandes Ecoles »
- CNRS scholarship for PhD candidates from

Developing Countries (BDI – PED)

3

Agenda

Preliminary
insights

Next steps
for industry

Intro : me &
SnT/Uni.lu

Program
Repair

GDR GPL Talk

4

The University of Luxembourg is a research university
with a distinctly international, multilingual and
interdisciplinary character.

The University’s ambition is to provide the highest
quality research and teaching in its chosen fields and
to generate a positive scientific, educational, social,
cultural and societal impact in Luxembourg and the
Greater Region.

The University of
Luxembourg

6,714
students

897
PhDs

270
faculty members

56%
international
students

129
nationalities

Ranked

12th Young University
worldwide and #1 worldwide for its “international
outlook” in the Times Higher Education (THE)
World University Rankings 2020

Who we are

5

The University of Luxembourg

3 Faculties

Who we are

• Computer Science
& ICT Security

• European and
International Law

• Finance and
Financial Innovation

• Education

• Materials Science
• Contemporary and

Digital History

• Interdisciplinary theme: Health
and Systems Biomedicine

• Interdisciplinary theme: Data
Modelling and Simulation

Research Focus Areas

3 Interdisciplinary Centres

6

A leading international
research and innovation centre in secure,
reliable and trustworthy ICT systems and
services. We play an instrumental role in
Luxembourg by boosting R&D investments
leading to economic growth and highly
qualified talent.

Collaborative, demand-driven
research model based on strategic
partnerships

Interdisciplinary
research approach in key

economic sectors

High-risk
long-term research

Highly selective
global recruitment

Our vision

Who we are

7

Key Figures
P

E
O

P
L

E

385
workforce

66
nationalities

36%
alumni who stay
in Luxembourg

P
A

R
T

N
E

R
S

H
IP

S
 &

 I
N

N
O

V
A

T
IO

N

Who we are

47%
of Doctoral
candidates on
Industrial projects

>50
partners

5M
Partners annual
contribution in Euros

5
Spin-offs

8

Breathing Trust into Business-Critical Software
TruX

e.g., E-payment, blockchain-based solutions, machine-learning based approaches, mobile apps, etc.

Most (if not all) modern business-critical solutions rely on software.

Critical Questions:

With:

• Quality of service (crash, bug)

• Limited Security Risks (vulnerabilities)

• Accounting for Compliance (GDPR)

How to foster the development of Trustworthy software-based solutions?

9

Trustworthy Software Engineering
TruX

• Vulnerability detection, Data
Leaks

• GDPR compliance
• Malware Detection,

Piggybacking Detection

Software Repair

Explainable Software

Software Security

Software Security Software Repair Explainable Software
• Patch Recommendation
• Automated Program Repair
• Bug Detection
• Vulnerability patching

• Information Retrieval
• Natural Language Processing
• Time Series Pattern

Recognition
• Machine learning

Program Repair Task Force:
Those who did the work!

Anil Koyuncu
(now @Sabanci)

Kui Lui
(now @NUAA)

Kisub Kim
(2 weeks left)

10

Hiring PhDs and Postdocs Now à

Haoye Tian
(2 years left)

Program Repair

Fixing Bugs is Expensive

123. B. Boehm and V. Basil, Software Defect Reduction Top 10 List, IEEE Computer, January 2001.

Let’s Recall Traditional Bug Fixing

13

Detection Localization Generation

From Manual to Automated Fixing

14

Manual
Fixing

Fully
Automated
Fixing

Test Automation

Automated Bug/Fault Localization

Program Repair

Static/Dynamic Analysis

Automated Program Repair (APR)

15

Heuristic-based program repair,
e.g., GenProg, SimFix, CapGen, AVATAR.

Constraint-based program repair,
e.g., Nopol, ACS, and Cardumen.

Learning-aided program repair,
e.g., Deepfix, Prophet, and Genesis.

4. Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program
repair. Communications of the ACM, 2019.

Template-based APR

16

Selected
fix pattern

Fix pattern
data base

AST of buggy
code

Patch
Candidates

Modify buggy
code with

donor code

Typical generate-and-validate pipeline /
“Template-based”

Patch CandidatesSelected
fix pattern

Patch Generation

Pass

Fail

Patch Validation

Patch

Testing

Fix Pattern Matching

Fault
Localization
with GZoltar

A Ranked List of
Suspicious

Code Locations

Buggy Program

Passing
tests

tests
Failing

Fix pattern
data base

< Code Fragment >
Select relevant

fix patterns

Mutate
suspicious code

Next
fix

pattern
Next suspicious code location

Fault Localization

- In practice, when can we identify the fault location ?
- In practice, where should we get the patterns ?
- In practice, is there a test suite available to validate the generated patch?

Research axes

18

How do we
localize faults in

practice ?

Can we ignore the
assumptions of
exhaustive test

suites ?

Can we be
efficient in the
generation of

patches?

Can we predict
patch correctness

beyond tests?

19

More on this talk
CONTEXT & OBJECTIVES

[1] Tian et al. Evaluating
Representation Learning of
Code Changes for Predicting

Patch Correctness in
Program Repair – ASE 2020

[2] Liu et al. On the Efficiency
of Test Suite based Program

Repair: A Systematic
Assessment of 16 Automated

Repair Systems for Java
Programs – ICSE 2020

[2] Liu et al. You cannot Fix
what you cannot find! An

Investigation of Fault
Localization Bias in

Benchmarking Automated
Program Repair Systems –

ICST 2019

[3] Koyuncu et al. iFixR – Bug
Report driven Program

Repair – FSE 2019

[4] Kim et al. FaCoY – A
Code-to-Code Search Engine

– ICSE 2018

[5] Liu et al. LSRepair: Live
Search of Fix Ingredients for
Automated Program Repair

– APSEC 2018

20

Preliminary
Insights

21

How could such a comparison be unfair?

*The numbers in parenthesis(#) denote the number of bugs fixed by APR tools but ignoring the patch ranking.

Repair Tool Performance Assessment

What are the assumptions
of fault localization?

22

23

Test
Pass

Fail

Patch Validation

Plausible
Patch

Patch
Candidate

APR
Approach

Patch Generation

Fault
Localization

Tools

A Ranked List
of Suspicious

Code
Locations

Fault Localization (FL)

Buggy
Program

Passing
tests

Failing
tests

Same SameContributionNo Discussion

Limited discussion on the impact of fault localization on APR tool performance.

Basic Repair process

24

Variabilities in FL integration within the Tools

1. APR tools may add some adaptations to the classical FL
2. Unknown to what extent performance is »just » due to better FL
3. Missing FL details for replication/reproduction

25

1. If the testing frameworks are different
2. If the localization assumptions are different

*The numbers in parenthesis(#) denote the number of bugs fixed by APR tools but ignoring the patch ranking.

Repair Tool Performance Assessment

BIASED

26

>

Localizability: --- a/src/org/jfree/data/time/Week.java
+++ b/src/org/jfree/data/time/Week.java

@@ −173, 1 +173, 1 @@
public Week(Date time, TimeZone zone) {

// defer argument checking...

- this(time, RegularTimePeriod.DEFAULT_TIME_ZONE,
Locale.getDefault());

+ this(time, zone, Locale.getDefault);
}

File Level

Method Level

Line Level

Localizability of benchmark bugs

27

>

One third of bugs in the Defects4J dataset cannot be localized at line
level by the commonly used automated fault localization tool.

Localizability of Defects4J bugs

28

>

Only a fraction of bugs can
be localized with high
positions in the ranking list of
suspicious positions.

Localizability of Defects4J bugs

29

>

APR tools are prone to correctly fix the subset of
Defects4J bugs that can be accurately localized.

Impact of Effective Localization Ranking

30

>

Normal FL:

File Assumption:

Method Assumption:

Line Assumption:

It relies on the ranked list of suspicious code locations reported
by a given FL tool.

It assumes that the faulty code files are known.

It assumes that the faulty methods are known.

It assumes that the faulty code lines are known. No
fault localization is then used.

kPAR: Java implementation of PAR (Kim et al. ICSE 2013)
+ Gzoltar-0.1.1 + Ochiai.

kPAR: A baseline for the research community

31

>

FLConf. Chart (C) Closure (Cl) Lang (L) Math (M) Mockito (Moc) Time (T) Total
Normal FL 3/10 5/9 1/8 7/18 1/2 1/2 18/49
File Assumption 4/7 6/13 1/8 7/15 2/2 2/3 22/48
Method Assumption 4/6 7/16 1/7 7/15 2/2 2/3 23/49
Line Assumption 7/8 11/16 4/9 9/16 2/2 3/4 36/55

Number of Defects4J bugs fixed by kPAR with four FL configurations.

C-1, 4, 7, L-59.
Cl-2, 38, 62, 63, 73.

M-15, 33, 58, 70, 75, 85, 89.
Moc-38, T-7.

File_AssumptionNormal_FL

C-26, Cl-4,
Moc-29, T-19. Cl-10

Method_Assumption

C-8,14,19.
Cl-31,38,40,70.
M-4,82, T-26.

L-6,22,24.

Line_Assumption

With better fault localization results, kPAR can correctly fix more bugs.

kPAR: comparison

What about Test
Suites?

32

Assumption of Complete/Reliable Test suite

33

Patch CandidatesSelected
fix pattern

Patch Generation

Pass

Fail

Patch Validation

Testing

Fix Pattern Selection

FL with
GZoltar

A ranked list
of suspicious

code locations

Buggy Program

Fix pattern
data base

Code AST

Mutate
suspicious code

Next
fix

pattern
Next suspicious code fragment

Fault Localization

Test Suite

Next
patch

candidate

…

Test Cases

Test suite

34

A relevant test case reproducing the bug may not be readily available, when a bug report is submitted
to the issue tracking system.

96%

4%

Defects4j Benchmark
Future test cases Available test cases

8%

92%

After Removing Future Test Cases
Failing test cases No failure

How to repair without future information?

35

Patch CandidatesSelected
fix pattern

Patch Generation

Pass

Fail

Patch Validation

Testing

Fix Pattern Selection

FL with
GZoltar

A ranked list
of suspicious

code locations

Buggy Program

Fix pattern
data base

Code AST

Mutate
suspicious code

Next
fix

pattern
Next suspicious code fragment

Fault Localization

Test Suite

Next
patch

candidate

…

Test Cases

?
?

iFixR: Bug Report driven
Program Repair

IRBL Features

Step 1

Bug Reports

Source Code
 Files

Step 0

Distribute to Regions

Standard IRBL

...

Regions

Step 2 Step 3 Step 4 Step 5

Divide Conquer

Best Models Leaf-wise Weights Computations

Code changes in
Software repositories

Bug fix
patches

Enhanced AST
diff representations

Diff hunk search
space construction

Rooted tree
isomorphism computation

Clustering based on
subgraph Identification

Step 0 Step 1 Step 2 Step 3 Step 4
Step 5

Iterative folding

Patch
Candidates

Patch Generation Patch Validation

Regression
Testing

Fix Pattern Matching

IR-based fault
localization

Suspicious
Code

Locations

Buggy
Program

Select
fix pattern

Mutate
suspicious code

Fault Localization
Bug

Report

Fix patterns

Manual
Validation

Developer Test

Code Elements
(AST)

36

iFixR - Fault Localization

37

Statement level Information Retrieval Fault Localization(IRFL)

Suspicious Code Files

Top-K Suspicious Code Files

Extract
Statements

Extract
Text

Similarity
Feature
Vectors

SscoreFscore X Suspicious
Statements
with weight
scores

iFixR - Fix Pattern-based Patch Generation

IRBL Features

Step 1

Bug Reports

Source Code
 Files

Step 0

Distribute to Regions

Standard IRBL

...
Regions

Step 2 Step 3 Step 4 Step 5

Divide Conquer

Best Models Leaf-wise Weights Computations

Code changes in
Software repositories

Bug fix
patches

Enhanced AST
diff representations

Diff hunk search
space construction

Rooted tree
isomorphism computation

Clustering based on
subgraph Identification

Step 0 Step 1 Step 2 Step 3 Step 4
Step 5

Iterative folding

Patch
Candidates

Patch Generation Patch Validation

Regression
Testing

Fix Pattern Matching

IR-based fault
localization

Suspicious
Code

Locations

Buggy
Program

Select
fix pattern

Mutate
suspicious code

Fault Localization
Bug

Report

Fix patterns

Manual
Validation

Developer Test

Code Elements
(AST)

38

All fix patterns in the APR community
Pattern Description Used by Pattern Description Used by

Insert Cast Checker Genesis Mutate Literal Expression SimFix

Insert Null Pointer Checker NPEFix Mutate Method Invocation ELIXIR

Insert Range Checker SOFix Mutate Operator jMutRepair

Insert Missed Statement HDRepair Mutate Return Statement SketchFix

Mutate Conditional Expression ssFix Mutate Variable CapGen

Mutate Data Type AVATAR Move Statement(s) PAR

Remove Statement(s) FixMiner

“Insert Cast Checker” fix pattern

iFixR - Patch Validation

39

A patch ordering strategy to recommend patches with priority

Heuristics to re-prioritize the patch candidates

1. Minimal changes

2. Fault localization suspiciousness

3. Affected code elements

40

RQ1: [Fault localization] : To what extent does IR-based fault localization
provide reliable results for an APR scenario?

RQ2: [Overfitting] : To what extent does IR-based fault localization point to
locations that are less subject to overfitting?

RQ3: [Patch ordering] : What is the effectiveness of MIMIC’s patch ordering
strategy?

> Research Questions

41

> IR-based FL vs Spectrum-based FL

Fine-grained IR-based Fault Localization (IRFL) can be as accurate as Spectrum-based fault localization
+ it does not require test cases

42

IR-based fault localization lead less to overfitted patches than the code locations suggested by
Spectrum-based fault localization

> Overfitting

43

>

Ordering works!

Patch Ordering

44

> iFixR vs the State-of-the-Art

- reasonable performance in patch recommendation @Top5
(we assume not having relevant test cases to validate the
patch candidates).

- Comparable performance to many state-of-the-art test-based
APR tools in the literature.

45

> One Last Thing…

Buggy code can be fixed by simply replacing it with « semantically » similar code...

à Effective for 21 Defects4J Bugs

Is patch generation
efficient?

46

47

“Time” is not a good metric for efficiency of
APR

Distribution CPU times for compiling and testing Defects4J programs

• Machine 1 runs OS X El Capitan 10.11.6 with 2.5 GHz Intel Core i7, 16GB 1600MHz DDR3 RAM.
• Machine 2 runs macOS Mojave 10.14.1 with 2.9 GHz Intel Core i9, 32 GB 2400MHz DDR4 RAM.

48

“NPC”: Number of Patch Candidates

Efficiency is not yet a widely-valued performance target

The more templates an APR system considers, the more nonsensical
and in-plausible patches it will generate

Can we predict patch
correctness?

49

Representation
learning of code
changes

• Static feature learning from patches with BERT,
Doc2Vec, Code2Vec and CC2Vec

50

Representation learning
of code changes

• Fixed code is ”similar” to buggy code!

51

52

Cosine similarity as a filter

Similarity thresholds can be used to filter out some incorrect patches!

53

Learning to classify patches

Embeddings offer reasonable performance for statically predicting patch correctness!

54

Next steps

55

New contexts/criteria
Next

Repair

Based on
User Input

With
feedback loop

Correctness
standard

With
explanations

56

ERC Starting grant – « NATURAL Program Repair »
Next

mainline

release N

pull request
is merged

bug report

pull request is rejected

software
user

human expert
contributors

Repair Bot
maintainer

ok with
the pull

request?

yes

no

feedbackPotential release
candidate

patch -
-
+

explanations
+examples

test
cases

Pull Request

1

2

3

4

5

University of Luxembourg
Multilingual. Personalised. Connected.

Réparation Automatique des Logiciels: le Rêve et la Fantaisie
GDR GPL, 14 Juin 2021

Prof. Dr. Tegawendé F. BISSYANDE

Contact: tegawende.bissyande@uni.lu

mailto:tegawende.bissyande@uni.lu

