UNIVERSITE DU
LUXEMBOURG

Background: Education, Mobility, Positions

(3) France

Telecom Engineering degree / 2006-2009

PhD in Computer Science (Debugging Linux) / 2009-2013
@University of Bordeaux

(6) Luxembourg

Research Associate / 2013-2016
Research Scientist / since 2016
@SnT, University of Luxembourg

(4) United States
Engineering Internship
(Demosaicing) 2008
@UC Santa Barbara

(2) Morroco

2004-2006
« Classes Préparatoires »

(5) Singapore
Visiting PhD
Data mining — 2012
@Singapore Mgmt. Univ.

N

1) Burkina Faso
Born in 1985
in 2004

Eiffel Excellence Scholarship for « Grandes Ecoles »
CNRS scholarship for PhD candidates from
Developing Countries (BDI — PED)

uni.ln | SOT

3 GDR GPL Talk

Agenda

Next steps

Repair

Intro : me &
SnT/Uni.lu

Preliminary
iInsights

uni.In | SOT

4 Who we are

The University of
Luxembourg

The University of Luxembourg is a research university
with a distinctly .international, multilingual and
interdisciplinary character.

The University’s ambition is to provide the highest
quality research and teaching in its chosen fields and
to generate a positive scientific, educational, social,
cultural and societal impact in Luxembourg and the
Greater Region.

Ranked

12t Young University

worldwide and #1 worldwide for its “international
outlook” in the Times Higher Education (THE)
World University Rankings 2020

UNIVERSITY OF
LUXEMBOURG

6,714

students

897
PhDs

270 56%

faculty members international
students

129

nationalities

uni.lu | SOT

5 Who we are

The University of Luxembourg

Research Focus Areas

« Computer Science * Finance and * Materials Science * Interdisciplinary theme: Health
& ICT Security Financial Innovation - Contemporary and and Systems Biomedicine

* European and Education Digital History * Interdisciplinary theme: Data
International Law Modelling and Simulation

3 Faculties 3 Interdisciplinary Centres
Fac 0 L anitioe A M e = -
I aculty of Science, ' Faculty of Law, . Faculty of Humanities, LU B L L.

Technology Economics Education and o0co00

and Medicine and Finance Social Sciences : : l.- S f E C DH -

uni.lu | SOT

6

Who we are

Our vision

A leading international

research and innovation centre in secure
reliable and trustworthy ICT systems and
services. We play an instrumental role in
Luxembourg by boosting R&D investments
leading to economic growth and highly
qualified talent.

Collaborative, demand-driven
w research model based on strategic
partnerships

EFI High-risk
/O L) long-term research

ST

7 o
A’

Interdisciplinary x
research approach in key

economic sectors

AR

Highly selective
RRA] aichel

R rQ\ P\ rO\ global recruitment
uni.ln | SOT

7 Who we are

Key Figures

PEOPLE

88
ARA
RRRAK

385

workforce

66

nationalities

36%
alumni who stay
in Luxembourg

INNOVATION

o3
(/)]
o
= o
(7))
(14
w
=z
|
(14
<
o

7™

fi)\v f?\ partners
g

47%
of Doctoral

candidates on
Industrial projects

>50

SM

Partners annual
contribution in Euros

8 TruX

Breathing Trust into Business-Critical Software

l Most (if not all) modern business-critical solutions rely on software. @@

e.g., E-payment, blockchain-based solutions, machine-learning based approaches, mobile apps, etc.

Critical Questions:

I How to foster the development of Trustworthy software-based solutions?

With:
« Quality of service (crash, bug)
« Limited Security Risks (vulnerabilities)

« Accounting for Compliance (GDPR)

wi.ln | SNT

9

TruX

Trustworthy Software Engineering

—_ e |

A NI Software Repair
TN / Ay
Software Security *o\.ﬁ—(i/\ 'q-';g_',_,*
— ¥ »-',..:“\ ‘.!.‘ /
NN, E i
(N %y Explainable Software
Software Security Software Repair Explainable Software
 Vulnerability detection, Data « Patch Recommendation * Information Retrieval
Leaks « Automated Program Repair « Natural Language Processing
« GDPR compliance * Bug Detection » Time Series Pattern
 Malware Detection, « Vulnerability patching Recognition
Piggybacking Detection * Machine learning

uni.ln | ST

..........

Ex3
T
... Hiring PhDs and Postdocs Now 2>
Kui Lui Anil Koyuncu Haoye Tian Kisub Kim
(now @NUAA) (now @Sabanci) (2 years left) (2 weeks left)

Program Repair Task Force: TR
Those who did the work! WIS

ST

Program Repair , - /‘[".,,

_E=n v, F .'*’ »* - § * 5 o
= . » . ; y . B -
»
. g - 5 . . : . el
. Y - . g - -

r— < VO o uni. o

UNIVERSITY OF
LUXEMBOURG

Fixing Bugs is Expensive

*
¢

o VEEIey
Vies bbb

The cost of correcting bugs bugs after release is

@(during the testing (QA) stage
The cost of correcting bugs 1 4 1 0 2
during.coding is $ 7, 1 36 $ ’

s937

Source: B. Boehm and V. Basil, Software Defect Reduction Top 10 List, IEEE Computer, January 2001

3. B. Boehm and V. Basil, Software Defect Reduction Top 10 List, IEEE Computer, January 2001 .'""-"IZ ‘ m

Let's Recall Traditional Bug Fixing

‘ _
b 74 e
pra - BN
Detection Localization Generation
. . .
P 1Y 4 4

uni.lu | ST

From Manual to Automated Fixing

, Fully
Fixing

Fixing

Test Automation

Automated Bug/Fault Localization
Static/Dynamic Analysis

Program Repair

uni.lu | SIT

Automated Program Repair (APR)

() Heuristic-based program repair,
e.g., GenProg, SimFix, CapGen, AVATAR.

4. Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program ||||i IHE ST
repair. Communications of the ACM, 2019. N | onl

Template-based APR

' Fix pattern |

\ data base | Modity buggy

| I Selected code with Patch

! fix pattern donor code Candidates

| cefbe S

. 43, - j - 2 p0
/ 4§<‘ N é_g . r

AST of buggy

code

il | SNT

Typical generate-and-validate pipeline /
“Template-based”

% . c Selected Mutate .
= electe l .

R suspicious code Patch Candidates

— . v :

- - ‘ @ fix pattern .
|}
7 — . Fix pattern \ * f &e =
3. o L] jr—_ —
Buggy Program » | S — . data base * # * {:} ; _:_—_
.#| < Code Fragment >
Fault - Select relevant . Patch
P 551 au A Ranked List of Next g .
fix patterns Fail
Localization Suspicious fix
with GZoltar Code Locations = | Next suspicious code location pattern
|}
|}
| | L | |
Fault Localization - Fix Pattern Matching - Patch Generation - Patch Validation

In practice, when can we identify the fault location ¢

In practice, where should we get the patterns ¢
- In practice, is there a test suite available to validate the generated patch?

wni.ln | SN

Research axes

How do we
localize faults in
practice ?

Can we ignore the
assumptions of
exhaustive test

suites ?

Can we be
efficient in the
generation of
patches?

Can we predict
patch correctness
beyond tests?

il | SOT

19

CONTEXT & OBJECTIVES

More on this talk

[1] Tian et al. Evaluating
Representation Learning of
Code Changes for Predicting

Patch Correctness in
Program Repair — ASE 2020

[2] Liu et al. On the Efficiency
of Test Suite based Program
Repair: A Systematic
Assessment of 16 Automated
Repair Systems for Java
Programs — ICSE 2020

[2] Liu et al. You cannot Fix
what you cannot find! An
Investigation of Fault
Localization Bias in
Benchmarking Automated
Program Repair Systems —
ICST 2019

o

[3] Koyuncu et al. jFixR — Bug
Report driven Program
Repair — FSE 2019

o
[]

[4] Kim et al. FaCoY—A
Code-to-Code Search Engine
—ICSE 2018

G,

[5] Liu et al. LSRepair: Live
Search of Fix Ingredients for
Automated Program Repair

— APSEC 2018

uni.lu | SOT

o ———

4 "/

MU i{ ¥ s
Preliminary
Insights

Repair Tool Performance Assessment

TABLE I
TABLE EXCERPTED FROM [33] WITH THE CAPTION “Correct patches
generated by different techniques”.

Proj. |SimFix| jGP | jKali | Nopol | ACS | HDR | ssFix |ELIXIR | JAID
Chart 4 0 0 1 2 -(2) 3 4 2(4)

Closure 6 0 0 0 0 -(7) 2 0 5(9)

Math 14 D 1 1 12 -(7) 10 12 1/(7)
Lang 9 0 0 3 3 -(6) > 8 1/(5)
Time 1 0 0 0 1 -(1) 0 2 0/(0)
Total 34 D 1 5 18 13(23) 20 26 9/(25)

*The numbers in parenthesis(#) denote the number of bugs fixed by APR tools but ignoring the patch ranking.

—

Vs
How could such a comparison be unfair?

21

What are the assumptions
of fault localization?

22

Basic Repalr process

Fault Localization (FL) Patch Generation Patch Validation

N

Fault A Ranked List
Localization of Suspicious
Tools Code

Locations
Same No Discussion Contribution Same

Limited discussion on the impact of fault localization on APR tool performance.

23

Variabilities in FL integration within the Tools

FAULT LOCALIZATION (FL) TECHNIQUES INTEGRATED INTO STATE-OF-THE-ART APR TOOLS.

jGP | jKali | jMutRepair| HDRepair | Nopol ACS ELIXIR | JAID ssFix CapGen | SketchFix | FixMiner | LSRepair SimFix
FL testing framework GZoltar | GZoltar | GZoltar ? GZoltar GZoltar ? ? GZoltar GZoltar ? GZoltar | GZoltar GZoltar
Framework version 0:1:1 0.1.1 0.1.1 7 0.0.10 0.1.1 ? 1 0.1.1 0.1.1 ? 0.1.1 0.1.1 1.6.0
FL ranking metric Ochiai | Ochiai Ochiai ? Ochiai Ochiai Ochiai ? g Ochiai Ochiai Ochiai Ochiai Ochiai
Granularity of fault locality | line line line line line line line line line line line line method line
Supplementary 0 0 0 Faulty method 0 Predicate 5 i Statements in 25 5 0 0 Test Case
information is known switching [53] i " |crashed stack trace) i Purification [54]

* The unspecified/unconfirmed information of an APR tools is marked with *?°. If an APR tool does not use any supplementary information for FL, the corresponding table cell is marked with ‘@’.

1. APR tools may add some adaptations to the classical FL

2. Unknown to what extent performance is »just » due to better FL
3. Missing FL details for replication/reproduction

24

Repair Tool Performance Assessment

TABLE 1
TABLE EXCERPTED FROM [33] WITH THE CAPTION “Correct patches
generated by different techniques”.

Proj. |SimFix JGP JKall Nopol | ACS | HDR | ssFix |ELIXIR | JAID
Chart 4 3 4 2(4)
Closure 6 ; 0 5(9)
Math 14 12 1/(7)
Lang 9 8 1/(5)
Time 1 0 2 0/(0)
Total 34 | 3 18 | 13(23) 20 26 9/(25)

*The numbers in parenthesis(#) denote the number of bugs fixed by APR tools but ignoring the patch ranking.

1.
2.

If the testing frameworks are different
If the localization assumptions are different

25

> Localizability of benchmark bugs

Localizability: --- a/src/org/jfree/data/time/Week.java
+++ H/src/org/jfree/data/time/Week.java

File Level
@@ -173,1+173. 1 @@

Method Level public Week(Date time, TimeZone zone) {
// defer argument checking...

Line Level - this(time, RegularTimePeriod.DEFAULT_TIME_ZONE,
Locale.getDefault());

= this(time, zone, Locale.getDefault);

26

> Localizability of Defects4]) bugs

NUMBER OF BUGS LOCALIZED™ WITH OCHIAI/GZOLTAR.

Project # Bugs File Method Line

GZ1 GZ- GZ, GZ- GZ, GZ->
Chart 26 25 2D 22 24 B 24
Closure 133 113 128 78 96 78 95
Lang 65 54 64 32 59 29 ¥
Math 106 101 105 92 100 91 100
Mockito 38 25 26 22 24 21 23
Time 27 26 26 22 22 22 22
Total 395 344 374 268 325 263 321

*A bug is counted as localized as long any of the faulty locations appear
in the ranked list of suspicious locations reported by the FL tool. GZ; and
GZo indicate GZoltar 0.1.1 and 1.6.0, respectively. The same abbreviations
are used for GZoltar versions in the following tables. The column GZ of
“Line” 1s highlighted since it is the most common configuration in APR
systems.

One third of bugs in the Defects4J dataset cannot be localized at line
level by the commonly used automated fault localization tool.

> Localizability of Defects4]) bugs

NUMBER OF BUGS LOCALIZED AT ToP-1 AND ToP-10.

Ranking GZ! GZ?

Metric File Method Line File Method Line

Top-1 Position

Tarantula 171 101 45 169 106 35

Ochiai 173 102 45 72 111 38

DStar2 173 102 45 175 114 40

Barinel 171 101 45 169 107 36 Only a fraction of bugs can
Opt2 175 o7 39 179 L15 39 be localized with high

Muse 170 98 40 178 118 41
Yaceavd 173 102 45 171 112 39 positions in the ranking list of
Top-10 Position suspicious positions.

Tarantula 240 180 135 247 189 144

Ochiai 244 184 140 242 191 145

DStar2 245 184 139 242 190 142

Barinel 240 180 135 242 190 145

Opt2 237 168 128 239 184 135

Muse 234 169 129 239 186 140

Jaccard 245 184 139 241 188 142

28

> [mpact of Effective Localization Ranking

*_ 1.00 - —_ — Correctly
c NN I fixed
= 1 1 1 Overfitting
@ 0757 lal I 1 fixed
Q I Unfixed
— 0.50 - - N 1t
O A Mean
O .
s 0.25 A T . ﬁ I 1A mmmm Median
S
& 0.00 T | ST /

2

1 2 3 1 3 1 2 3
File Level Method Level Line Level

APR tools are prone to correctly fix the subset of
Defects4J bugs that can be accurately localized.

> KkPAR: A baseline for the research community

kPAR: Java implementation of PAR (Kim et al. ICSE 2013)
+ Gzoltar-0.1.1 + Ochiai.

Normal FL: It relies on the ranked list of suspicious code locations reported
by a given FL tool.

File Assumption: It assumes that the faulty code files are known.

Method Assumption: It assumes that the faulty methods are known.

Line Assumption: It assumes that the faulty code lines are known. No
fault localization 1s then used.

> KkPAR: comparison
Number of Defects4]J bugs fixed by kPAR with four FL configurations.

FL Conf. Chart (C) | Closure (Cl) | Lang (L) | Math (M) | Mockito (Moc) | Time (T)| Total

Normal FL 3/10 5/9 1/8 7/18 1/2 1/2 18/49
File Assumption 4/7 6/13 1/8 7/15 2/2 2/3 22/48
Method Assumption 4/6 7/16 1/7 7/15 2/2 2/3 23/49
Line Assumption 7/8 11/16 4/9 9/16 2/2 3/4 36/55

[l Normal_FL [7] File_Assumption [_] Method_Assumption [| Line Assumption

C-1,4, 7, L-59.
Cl-2, 38, 62, 63, 73.
M-15, 33, 58, 70, 75, 85, 89.
Moc-38, T-7.

C-26, Cl-4,
Moc-29, T-19.

C-8,14,19;
C1-31,38,40,70.
M-4,82, T-26.
1.-6,22,24.

With better fault localization results, KPAR can correctly fix more bugs.

What about Test
Suites?

Assumption of Complete/Reliable Test suite

o O
= . Testing
FL with) eEm—
GZoltar) cnmmm——
,. Ea
—&J
FE=

Buggy Program 2 ’
. —
A ranked list . resii
of suspicious Fail —
code locations
Test Suite
Fault Localization Patch Validation

o~y >

Test Cases 33

Test suite

A relevant test case reproducing the bug may not be readily available, when a bug report is submitted
to the issue tracking system.

Defects4j Benchmark After Removing Future Test Cases

W Future testcases m Available test cases W Failing testcases m No failure

34

How to repair without future information?

S I—
FL with) eEm—
GZoltar) cammm—
G
°

Buggy Program 2 * # "
A ranked list Fail
? of suspicious al —
code locations a
[]
Fault Localization Patch Validation

o~y >

Test Cases 35

iIFixR: Bug Report driven

Program Repair

\\IR—baS.edj."ault \\\ \\\ n Select \\\ . Mutate . \\Regression VA/l[fZ”;fl .
| . .
\\{OcallzatZOn i — \‘ \\ — ﬁx patl’em \\ \‘ SUSplC’lOuS C'Ode y . \\ \\‘ Testlng a l&lon \“
3 E \ \ . \ == \ \ O
PBuggy \‘ =l + Fix patterns d * Vo @ }ﬁ R B P - 4 lgl :
rogram » .. b {% { Uy J a Nd— * v 1
Suspicious »] digjb » ‘\ »,"3' I['.I* - | ! 1 Developer Test ,.'

A T
, @ Code 1' / — ,I’ A —"‘} * . / / \ ‘ | !
. / 1 - 7
,I Locatlons// /l COde Elements /l /, PatCh /' /' o /
’

Bug / . . (AST) S Candidates,”” —

B e T _E et ————— - — e e e e e L m—

Report ~ Fault Localization Fix Pattern Matching Patch Generation Patch Validation

36

IFiXR - Fault Localization

Statement level Information Retrieval Fault Localization(IRFL)

Suspicious Code Files

FSCO re

Bug Report Top-K Suspicious Code Files

Extract
Statements

Extract
Text

Feature
Vectors

Suspicious
X S ‘
seore Statements

with weight
scores

37

IFiXR - Fix Pattern-based Patch Generation

All fix patterns in the APR community

Insert Cast Checker Genesis Mutate Literal Expression SimFix
Insert Null Pointer Checker NPEFix Mutate Method Invocation ELIXIR
Insert Range Checker SOFix Mutate Operator jMutRepair
Insert Missed Statement HDRepair Mutate Return Statement SketchFix
Mutate Conditional Expression ssFix Mutate Variable CapGen
Mutate Data Type AVATAR Move Statement(s) PAR
Remove Statement(s) FixMiner

+ 1f (exp instanceof T) {

o (T) exp...; oot
o)

“Insert Cast Checker” fix pattern

38

iIFiXR - Patch Validation

A patch ordering strategy to recommend patches with priority

Heuristics to re-prioritize the patch candidates

1. Minimal changes
2. Fault localization suspiciousness

3. Affected code elements

> Research Questions SIT

securityandtrust.lu

RQ1: [Fault localization] : To what extent does IR-based fault localization
provide reliable results for an APR scenario?

RQ2: [Overfitting] : To what extent does IR-based fault localization point to
locations that are less subject to overfitting?

RQ3: [Patch ordering] : What is the effectiveness of MIMIC’s patch ordering
strategy?

> |R-based FL vs Spectrum-based FL

Table 5: Fault localization results: IRFL (IR-based) vs. SFL
(Spectrum-based) on Defects4] (Math and Lang) bugs.

(171 bugs) Top-1 Top-10 Top-50 Top-100 Top-200 All
IRFL 25 72 102 117 121 139
SFL | GZ 1 26 75 106 110 114 120

GZ:o 23 79 119 135 150 156

T GZy1 and GZy7 refer to GZoltar 0.1.1 and 1.6.0 respectively, which
are widely used in APR systems for Java programs.

Fine-grained IR-based Fault Localization (IRFL) can be as accurate as Spectrum-based fault localization
+ it does not require test cases

> Qverfitting

IRFL vs. SFL impacts on the number of generated
genuine/plausible patches for Defects4] bugs.

Lang Math | Total
IRFL Top-1 1/4 3/4 4/8 " i . i
SFL Top-1 1/4 68 | 112 Dissection of reasons why patches are plausible™ but
SFL Top-5 2/7 1117 | 13/24 i
IRFL Top-10 4/9 S e Lgealization _Pa.tt.ern_ Lack of Fix ingredients
SFL Top-10 4/11 16/27 | 20/38 Error Prioritization
IRFL Top-20 7/12 9/18 16/30 w/ IRFL 6 1 16
SFL Top-20 4/11 18/30 | 22/41 w/ SFL 15 1 10
H;%wa-i% Z :;5 ;g; ii | ;z z; * A plausible patch passes all test cases, but may not be semantically
2 equivalent to developer patch (i.e., genuine). We consider a plausible
IRELLop; 100 B8 1023 18l patch to be overfitted to the test suite
SFL Top-100 5/14 19/36 | 24/50
IRFL All 11/19 10/25 21/44
SFL All 5/14 19/36 | 24/50

* We indicate x/y numbers of patches: x is the number of
bugs for which a genuine patch is generated; y is the number
of bugs for which a plausible patch is generated.

IR-based fault localization lead less to overfitted patches than the code locations suggested by
Spectrum-based fault localization
42

Patch Ordering

Table 9: Overall performance of iFixR for patch recommen-
dation on the Defects4] benchmark.

Recommendation rank | Top-1 Top-5 Top-10 Top-20 All
without patch re-prioritization 3/3 4/5 6/10 6/10 13/27
with patch re-prioritization 3/4 8/13 9/14 10/15 13/27

* x/y: x is the number of bugs for which a correct patch is generated; y is the number of
bugs for which a plausible patch is generated.

Ordering works!

43

> |FixR vs the State-of-the-Art Sl

Table 10: iFixR vs state-of-the-art APR tools.

APR tool Lang” Math* Total*
jGenProg [58] 0/0 5/18 5/18
iKali [58] 0/0 1/14 1/14
jMutRepair [58] 0/1 2/11 2/12
HDRepair [35] 2/6 4/7 6/13
Nopol [92] 3/7 1/21 4/28
ACS [91] 3/4 12/16 15/20
ELIXIR [72] 8/12 12/19 20/31
JAID [12] 1/8 1/8 2/16
ssFix [89] 5/12 10/26 15/38
CapGen [83] 5/5 12/16 17/21
SketchFix [18] 3/4 7/8 10/12
FixMiner [30] 2/3 12/14 14/17
LSRepair [43] 8/14 7/14 15/28
SimFix [19] 9/13 14/26 23/39
kPAR [47] 1/8 7/18 8/26
AVATAR [48] 5/11 6/13 11/24
iFixRopt 11/19 10/25 21/44
iFixR,); 6/11 7/16 13/27
iFixRzops 3/7 5/6 8/13

* x /y: x is the number of bugs for which a correct patch is generated; y is the number of bugs
for which a plausible patch is generated.

iFixRopt: the version of iFixR where available test cases are relevant to the bugs.

iFixR,;;: all recommended patches are considered.

iFixR¢ops5: only top 5 recommended patches are considered.

securityandtrust.lu

- reasonable performance in patch recommendation @Top5
(we assume not having relevant test cases to validate the
patch candidates).

- Comparable performance to many state-of-the-art test-based
APR tools in the literature.

44

One Last Thing... ST

securityandtrust.lu

Buggy code can be fixed by simply replacing it with « semantically » similar code...

) @ Q“"snt“’:j
User Input & i Searching for Answer
% = | Cotooue —> o3| Similar Code —— {1l S)
24 Query Snippets 4| Snippet
Code Fragment ‘ 1

3)

Searching for

Code Snippet Question

— s
Index * Index J Index ‘) - Sum}ar
Questions
)) o
ITE Searching for Generating Que%ioﬁ§
=| €

Code (_Cod.e(_ Expanded [€—
Queries Code Query Answer

Examples

) 4

Search Results

| Snippet

- Effective for 21 Defects4) Bugs

45

s patch generation
efficient?

‘'ime” is not a good metric for efficiency of
APR

((

“defects4] compile” “defects4] test”
00- 110+ ;
= 100. $ Machinel
90 E] Machine?
e A i)
- 004 701
w
O 1 50] 50
g 40_ 50'
F 30' :g_ [] * ==
201 % Ll 20{ == = é
0] e 1T i, T= LM =] 0 + + T =
* . 0-
Gy Cloo Loy Mo, Mo, G Cloo Loy, Mo Mo, T4
)t?r[. OS[I/'@ ‘3[]é). =75 /1 OC“,]}OIl)]e 2 r?,? OS(I['G ‘bjé) a{/] OC' éj'(oll D, e

Distribution CPU times for compiling and testing Defects4) programs

® Machine 1 runs OS X El Capitan 10.11.6 with 2.5 GHz Intel Core i7, 16GB 1600MHz DDR3 RAM.
e Machine 2 runs macOS Mojave 10.14.1 with 2.9 GHz Intel Core i9, 32 GB 2400MHz DDR4 RAM.

“NPC”: Number of Patch Candidates

jGenProg{lf7 = * ° -
GenProg—A | HI.‘ AA . E3 Nonsensical patches
£3 In—plausible patches
jGenProg- D—| « .]MUtRepaH h‘ .
GenProg—A+[[H .« e - AR H—/—— o ... 5
_]MutRepalI'IH 2.® . . N s =
T S RsRepar AR 3. 2
RSRepan'_A-Ilj-l . .o . o a : |
Kali{[] e Kati{fy .
Kali-A-H Kali—A-"
DynaMoth-}
Nopol{| D_vnaMoth-I,
ACSl »
Cardumeni{]l __ F— . Nopol{ |
.ARJA'II |—| s . @ Acs.t.
SimFix{l_| I
FixMiner{[1_H . . . Cardumen b_| .
AVATARHT —— }— . oo
TBaI'H | | I ARJA{ Ij:]—|. T .
) 500 1000 1500 2000 2500 3000 3500 SimFix-', . :
of patch candidates '
P FixMiner - BF‘ = * i
Efficiency is not yet a widely-valued performance target AVATAR (T —— 1= * s
ol L L C

0 500 1000 1500
of patch candidates

2000 2500 3000

3500

The more templates an APR system considers, the more nonsensical
and in-plausible patches it will generate 48

Can we predict patch
correctness?

Representation

 Static feature learning from patches with BERT,

|ea ' | N g Of COd e Doc2Vec, Code2Vec and CC2Vec

changes

Code representation
""") R R S e R S T CC2Vec code representation

' P | [
: : -' :
[! 1 1 3D CNN Fully connected Output
e —:—>*-—:—>) h) : E § layer 3 layer ______ Iayer » ﬁ
- B 1 | > : buggy code
:_=‘ " § 5 buggy code E Bert, Doc2Vec or Code2Vec E buggy code T_‘ N § Lz o %'?ctor
= ' 2 : : embedding model ¢ vector — % g_ 3
patch : osn‘ ! | i atch é'- ﬁ
E :, > : > |] [] [] |_3_> H P E
i : patched code H H Trained CC2vec model [patched code
S q O 1 1o vector
vector

50

. . 100' T —— 100'
Representation learning T fjf* ==
of code changes & T|& |t

S 5 ;b
£ . E *
75! w2
: :
ol 8 ¥ 4 . ool
Bears Bj D4]J MSS QB Bears Bj D4 MSS QB
(a) BERT. (b) CC2Vec.
100 , 100 7= : =
R o0 S [&
* Fixed code is ”similar” to buggy code! i; o = % ok ..
"'é‘ L 5 —
£ 801 E 60 .
w w2 L
* L] . B L]
70 - ™~ - 40
Bears Bj D4J MSS QB Bears Bj D4J MSS QB

(c) Doc2Vec. (d) code2vec.

51

Cosine similarity as a filter

BERT CC2Vec Doc2Vec
#
Dataset CP #IP | Threshold o5 Recall Recall [#5CP #.IP +Recall -Recall | #sCP #.IP +Recall -Recall
Bears, Bugsjar | .- . oo | 1stQu 57 48846 64% | 789% | 797 19.499 | 892% @ 315% | 794 25192 88.9% 40.7%
and Defects4j ! Mean 49 51,783 5.5% 83.6% 789 23,738 88.4% 38.3% 771 33,218 86.3% 53.6%
. 1st QlL 4 1,387 57.1% 94.9% 4 1,198 571% 82.0% 7 1,226 100% 83.9%
QuixBugs I 86l Mean 1 1378 571% | 943% 4 1255 571% 85.9% 71270 . 100% 86.9%

*“# CP” and “# IP” stand for the number of correct and incorrect patches, respectively. “# +CP” means the number of correct patches that can be ranked upon the threshold,
while “# -IP” means the number of incorrect patches that can be filtered out by the threshold. “+Recall” and “~Recall” represent the recall of identifying correct patches

and filtering out incorrect patches, respectively.

Similarity thresholds can be used to filter out some incorrect patches!

52

Learning to classify patches

fragments |

Input Feature extractor Classifiers

:'-"-"""-"""": E—_-----—__-__--_--_--——__-_--‘: f-"""""“: Classifier Embeddlng Acc. Prec. Recall F1 AUC

: 7 R P mee——p § S BERT 63.6 620 573 59.6 0.632

: * i 18 CC\;CC " P [iLogistic regression! DecisionTree CC2Vec 69.0 66.9 68.0 67.2 0.690

: 1 R | k Doc2Vec | 60.2 574 577 57.5 0.600

' ' i = ' = :

: —% bruggry!“ c:«Lic; | E & = wentt | I /ﬁ 2 | BERT 744 738 703 720 0.808

' =4 ragments «——ypu = | ' ’ s a0 .

: —1i .5 e . i = —> -5 = Logistic regression CC2Vec 73.9 725 72.0 72.0 0.788

patches | [N - | I A sl & Doc2Vec | 663 653 599 623 0.707

g . @—_’ n = P 2 5 BERT 603 556 77.0 645 0.642

: patched code{ | ;: - and ¢+ Oo0 5 Naive bayes CC2Vec 580 654 227 285 0.722
| | 1

‘ Doc2Vec 663 694 49.8 57.9 0.714

Embeddings offer reasonable performance for statically predicting patch correctness!

53

- . ,:
4 ’ =
.‘ - a > - A‘,
¢ * 5 ”® " e 2
. - » y, _i'.‘. 2r .
» ’ .
3 » ¢ 1
I N ° g » f .

< NeXt Steps,. ‘ Jlr?".. Y .:.'#_;*:/

¥ = 8 & B
* : -i A ‘." »
- S ﬂ "N % YA
» | L
A *
- »
" 1 “ Ay <
- AR V.
S\ * Va. ' N\
.. D { 3 ;
‘ - } * v ¥ . »
.' . 8
. s G\ {
. *
i *
-

» . []
: 8 . lu
" .
UNIVERSITY OF
LUXEMBOURG

55 Next

New contexts/criteria

With
feedback loop

Based on
User Input

Repair

With
explanations

Correctness
standard

uni.ln | ST

56 Next

ERC Starting grant — « NATURAL Program Repair »

human expert . ﬂ ' ﬂ

contributors <> > <> @
: : : : mainline
| \ 4 \ 4 \ 4 \ 4 >
software W i pull request
user t is merged @

8 «— release N

Mo @

— o mm s oEm ~

patch

the pull

I 1
I 1
—>! — &

— 1
bug report | explanations test

1 +examples cases | maintainer

1 @

1
Q< 3 L

Potential release (2 feegpack .- * pull request is rejected

candidate @

uni.ln | ST

LUXEMBOURG

2
[a]
‘w
=
n
R
w
2
4
D

il
{]

)i

Contact: tegawende.bissyande@uni.lu

mailto:tegawende.bissyande@uni.lu

