The upcoming wall of software complexity in computational sciences

Journées Nationales du GDR GPL – June 2022 – Vannes, France

Vincent Reverdy, CNRS IN2P3/INS2I, Laboratoire d'Annecy de Physique des Particules

5. Genericity

7. Conclusions

From nice drawings on a blackboard...

2. Problem

GDR GPL – June 7th, 2022 – Vannes, France

Vincent Reverdy – Software Complexity in Computational Sciences

... to unmaintainable monsters

type, Kind>::value) && (std::tuple_size<typename std::remove_cv<typename std::remove_reference<Tuple>::type>::value >= 1)>::type> static constexpr Kind accumulate(Tuple&& tuple); template <typename Kind, class Operation = std::plus<Kind>, typename... Kinds, class = typename std::enable_if<(std::is_convertible<Kind, int>::value) && (std::is_convertible<typename std:: result_of<Operation(Kind, Kind)>::type, Kind>::value)>::type> static constexpr Kind accumulate(const Kind value, const Kinds... values); template <typename Kind, class Operation = std::plus<Kind>, class = typename std::enable_if<(std::is_convertible<Kind, int>::value) && (std::is_convertible<typename std::result_of<Operation(Kind, Kind)>::type, Kind>::value)>::type> static constexpr Kind accumulate(const Kind value); template <typename Kind, int Exponent = 1, int One = 1, bool Greater = (Exponent > 1), bool Less = (Exponent < 0), bool Equal = (Exponent == 1), class = typename std::enable_if<std:: is convertible<Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Kind, int>::value>::type> static constexpr Kind pow(const Kind value); template <typename Integer, Integer Zero = Integer(), Integer One = Integer(), Integer Ones = ~Zero, Integer Size = sizeof(Integer)*std::numeric_limits<unsigned char>::digits, class = typename std::enable if<((std::is integral<Integer>::value) ? (std::is unsigned<Integer>::value) : (std::is convertible<Integer, int>::value)) & (!std::is floating point<Integer>::value)>:: type> static constexpr Integer block(const Integer location = Żero, const Integer length = Size); template <typename Integer, Integer Index = Integer(), Integer Zero = Integer(), Integer One = Integer(1), Integer Condition = (Index+One <= sizeof(Integer)*std::numeric_limits<unsigned char template <typename Integer, Integer Index = Integer(), Integer 2010 = Integer(), Integer (), Inte template <typename Integer, Integer Index = Integer(), Integer Zero = Integer(), Integer One = Integer(1), Integer Size = sizeof(Integer)*std::numeric_limits<unsigned char>::digits, Integer Condition = (Index+One <= Size), class = typename std::enable_if<((std::is_integral<Integer)::value) ? (std::is_unsigned<Integer):value) : (std::is_convertible<Integer, int>::value)) && (! std::is_floating_point<Integer, Integer Mask = ~Integer(), Integer Step = Integer(1), Integer One = Integer(1), Integer Ones = ~Integer(), Integer Condition = (Step+One <= sizeof(Integer)*std:: numeric_limits<unsigned_char>::digits), class = typename std::enable_if<((std::is_integral<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer Mask = ~Integer(), Integer Step = Integer(1), Integer One = Integer(1), Integer Ones = ~Integer(), Integer Condition = (Step+One <= sizeof(Integer)*std:: numeric_limits<unsigned_char>::digits), class = typename std::enable_if<((std::is_integral<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer Mask = ~Integer(), Integer Step = Integer(1), Integer One = Integer(1), Integer Ones = ~Integer(), Integer Condition = (Step+One <= nh<Integer>(sizeof(Integer)*std::numeric_limits<unsigned_char>::digits), class = typename std::enable_if<((std::is_integral<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer>(sizeof(Integer)*std::numeric_limits<unsigned_char>::digits)), class = typename std::enable_if<((std::is_integral<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer>:value) : (std::is_convertible<Integer>:value constexpr Integer lzcnt(const Integer value); template <typename Integer, Integer Mask = ~Integer(), Integer Step = nhp<Integer>(sizeof(Integer)*std::numeric_limits<unsigned char>::digits), Integer Zero = Integer(), Integer One = Integer (1), Integer Ones = ~Zero, Integer Size = nhp<Integer>(sizeof(Integer)*std::numeric limitsunsigned char>::digits), Integer Temporary = periodic(Step*(One+One)+(Step = Zero)), clas = typename std::enable_if<((std::is_integer</pre>(Step*::value) ? (std::is_unsigned(Integer>::value) : (std::is_convertibleInteger, int>::value)) && (!std::is_floating_pointInteger>::value) : (std::is_convertible = typename std::enable_if<((std::is_integral<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value) ? ((Mask >> Step) & (Condition)) : (Condition)), class = typename std::enable_if<((std::is_integral<Integer>::value) ? (std::is_unsigned<Integer value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer>::value) : (std::is_convertible<Integer, int>::value) && (!std::is_floating_point<Integer>::value) : (std::is_convertible<Integer, int>::value) && (!std::is_floating_point<Integer>::value) : (std::is_convertible<Integer, int>::value) && (!std::is_loating_point<Integer) * std:: unsigned<Integer value) : (std::is_convertible<Integer value) ? (std::is_unsigned<Integer) ?:value) : (std::is_convertible<Integer) ?: value) ? ((Mask >> Step) & (Condition)) ? (Imask >> Step) & (Condition) ? (Condition) ? (Imask >> Step) & (Condition) ? (Condition) ? (Imask >> Step) & (Std::is_integer) ?: value) ? (std::is_onsteper Integer (Imager Step = Integer(), Integer Step = Integer(), I template <typename Integer, Integer Mask = ~Integer(), Integer Staft = Integer(), Integer Shift = Integer(), Integer Condition = (Step40ne <= sizeof(Integer)*std:: numeric_limits<unsigned char>::digits), Integer Temporary = ((Condition) ? ((Mask >> Step) & (Condition)), class = typename std::enable_if<((std::is_integer<s::value) ? (std::is_unsigned/Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer>::value)>::type> static constexpr Integer (), Integer Count = Integer(), template <typename Integer, Integer Mask = ~Integer(), Integer Period = sizeof(Integer)*std::numeric_limits<unsigned char>::digits, Integer Step = Integer(), Integer Count = Integer(), template <typename Integer, Integer One = Integer(1), Integer Size = sizeof(Integer)*std::numeric_limits<unsigned char>::digits, Integer Step = Integer(), Integer Count = Integer(), Integer Zero = Integer(), Integer One = Integer(1), Integer Size = sizeof(Integer)*std::numeric_limits<unsigned char>::digits, Integer Condition = (Step+One <= Size), Integer Population = popcnt<Integer>(Mask)+((Period-(popcnt<Integer>(Mask)%Period))*(popcnt<Integer>(Mask)%Period)+(((Condition) ? ((Mask >> Step) & (Condition) ? ((Mask >> Step) & (Condition)) ? (Count) : (Zero))*((Population+One <= Period)))/Period))*(Period)+(((Condition) ? ((Mask >> Step) & (Condition)) ? (Count) : (Zero))/((Population+One <= Period)))/Period)), Integer Temporary = ((Condition) ? ((Mask >> Step) & (Condition)) ? (Count) : (Zero))/((Population+(Integer>::value) ? (std::is_unsigned<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer>::value)>::type> static constexpr Integer itTo(const_Integer>::value)? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) && (!std::is_floating_point<Integer>::value)>::type> static constexpr Integer itTo(const_Integer>::value) itlc(const Integer value); template <typename Integer value;, template <typename Integer, Integer Mask = ~Integer(), Integer Period = sizeof(Integer)*std::numeric limits<unsigned char>::digits, Integer Step = Integer(), Integer Count = Integer(), Integer Zero = Integer(), Integer One = Integer(1), Integer Size = sizeof(Integer)*std::numeric limits<unsigned char>::digits, Integer Condition = (Step+One <= Size), Integer Population = popcnt<Integer>(Mask)+((Period-(popcnt<Integer>(Mask)%Period))*(popcnt<Integer>(Mask)%Period != Zero)), Integer Destination = (((((Condition) ? ((Mask >> Step) & (Condition)) ? ((Condition)) ? ((Mask >> Step) & (Condition)) ? ((Mask >> Step) & (Condition) ? ((Mask >> Step) & (Condition)) ? ((Mask >> Step) & (Condition) ? ((Mask >> Step) & (Condition)) ? ((Mask >> Step) & (Condition) ? ((Mask >> Step) & (Condition)) ? ((Mask >> Step) & (Condition) ? ((Mask >> Step) & (Condition) ? ((Mask >> Step) & (Condition)) ? ((Mask >> Step) & (Condition) ? ((Mask >> Step) & (Condition) ? (count) : (2ero)/%Period) ((countion) / (((mask >> step) & (countion)) : (count) : (2ero)//Period), Integer Temporary = ((condition)) / (((mask >> step) & (condition)) : (condition)) & (2ero)//Period), Integer Temporary = ((condition)) / (((mask >> step) & (condition)) : (condition)) & (2ero)//Period), Integer Temporary = ((condition)) / (((mask >> step) & (condition)) : (condition)) & (2ero)//Period), Integer Temporary = ((condition)) / (((mask >> step) & (condition)) : (condition)) & (2ero)//Period), Integer Temporary = ((condition)) / ((condition)) & (condition)) & (condition)) & ((condition)) & (condition)) & (condition) & (condition) & (condition) & (condition)) & (condition)) & (condition) & (condition)) & (condition) & (condition) & (condition) & (condition) & (condition)) & (condition) & (condition) & (condition) & (condition) & (condition) & (condition) & (condition)) & (condition) & (std::enable_if<((std::is_integral<Integer>::value) ? (std::is_unsigned<Integer>::value) : (std::is_convertible<Integer, int>::value)) & (!std::is_floating_point<Integer>::value) & (std::is_integral<Integer>::value) & (std::is_integral<Integer>:value) & (std::is is_convertible<typename std::tuple_element<Step, typename std::remove_cv<typename std::remove_reference<Tuple>::type>::type>::type, Integer>::type>:static constexpr Integer glue(

2

5. Genericity

Reality

6. Expressivity

OH DEAR GOD NO

7. Conclusions

Expectation vs reality

2. Problem

Expectation

GDR GPL – June 7th, 2022 – Vannes, France

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions
An introductory tale						
1 Int	roduction	An introductory tale				
2	Problem	Framing the problem of software complexity				
0 F		A manatic				
3 Fr	amework		al guiding f	ramework		
4 Pe	rformance	Exploring performance concerns				
5 G	enericity	Exploring	genericity	and abstra	ction strategi	es
6 Ex	pressivity	Exploring	, expressivi	ty and DSLs		
		- • •		¢	1 •-	
7 Co	onclusions	Facing the wall of software complexity				

Once upon a time...

...in a galaxy far far away...

... on a small piece of rock...

...wandering aimlessly in a vast Universe...

Let's start with a story

2. Problem

...a team of astrophysicists was wondering about the nature of life, the Universe, and everything.

7. Conclusions

A crash course in astrophysics simulations

2. Problem

...and let's fill that enormous box with particles weighing the mass of millions of suns... (note: yes that's kind of huge)

7. Conclusions

A crash course in astrophysics simulations

2. Problem

Now, divide the box in cells using a regular grid and apply the following recipe:

4. Performance

5. Genericity

ericity

7. Conclusions

6. Expressivity

A crash course in astrophysics simulations

2. Problem

- I) For each cell c containing particles with position $\overrightarrow{x_i}$ and velocity $\overrightarrow{v_i}$
- 2) Interpolate density ρ in cell c depending on surrounding particles
- \blacksquare 3) From ho compute the gravitational potential Φ
- 4) From Φ interpolate back the acceleration \vec{a} at position $\vec{x_i}$
- 5) From \vec{a} compute the new speed \vec{v}_j of each particle
- 6) From $\overrightarrow{v_j}$ compute the new position $\overrightarrow{x_j}$ of each particle

A crash course in astrophysics simulations

GDR GPL – June 7th, 2022 – Vannes, France

Using this recipe with millions of particles we can simulate galaxy formation!

Simulating galaxies is nice...

...but simulating the expansion of the Universe requires to take the approach to a whole new level...

5. Genericity

6. Expressivity

7. Conclusions

From galaxies to expanding the Universe

2. Problem

First they took a supercomputer.

GDR GPL – June 7th, 2022 – Vannes, France

Vincent Reverdy – Software Complexity in Computational Sciences

7. Conclusions

From galaxies to expanding the Universe

2. Problem

Third, they filled the box with billions of particles with the same statistical distribution as the matter in the primordial Universe.

From galaxies to expanding the Universe

2. Problem

Fourth, they updated their algorithm using an Adaptive Mesh Refinement (AMR) strategy to increase resolution in regions of interest.

4. Performance

5. Genericity

ricity

6. Expressivity

7. Conclusions

From galaxies to expanding the Universe

2. Problem

And after all this work this is what they obtained:

GDR GPL – June 7th, 2022 – Vannes, France

3. Framework

4. Performance

5. Genericity

ity

6. Expressivity

7. Conclusions

From galaxies to expanding the Universe

2. Problem

... and they lived happily ever after...

...except for one tiny annoying detail...

GDR GPL – June 7th, 2022 – Vannes, France

Vincent Reverdy – Software Complexity in Computational Sciences

3. Framework

4. Performance

5. Genericity

 $8\pi G$

μν

6. Expressivity

7. Conclusions

A tiny annoying detail about General Relativity

2. Problem

Wait, what about General Relativity?

GDR GPL – June 7th, 2022 – Vannes, France

Vincent Reverdy – Software Complexity in Computational Sciences

space-time geometry $G_{\mu\nu}$

energy-matter

contents

5. Genericity

ricity

6. Expressivity

A tiny annoying detail about General Relativity

2. Problem

space-time
$$\rightarrow G_{\mu\nu} = rac{8\pi G}{c^4} T_{\mu\nu} \leftarrow \begin{array}{c} {
m energy-matter} \\ {
m contents} \end{array}$$

In cosmological simulations the space-time geometry evolution is precomputed...

...that means no dynamic backreaction of the contents on the geometry

It's classical physics in a pre-computed expanding background

2. Problem 1. Introduction **4.** Performance 5. Genericity 6. Expressivity 7. Conclusions 3. Framework A tiny annoying detail about General Relativity Why no fully relativistic simulations? Because... There is not enough computing power 2. Even if there is, it's not possible algorithmically 3. Ok, maybe... but in any case it's not interesting

Vincent Reverdy – Software Complexity in Computational Sciences

Two domains with uncomposable complex codes!

Programs = Code = Technical artifacts

For the most part, in computational sciences, the structural complexity of programs is an unthought

GDR GPL – June 7th, 2022 – Vannes, France

There is no solution to be found to a problem that does not exist

4. Performance

5. Genericity

6. Expressivity

7. Conclusions

Most physics codes are built from the same categories of components

Physics

2. Problem

$$\begin{split} & \forall (x) = \left\{ \begin{matrix} 0, & x < 0, \\ \forall b, & x \geq 0. \end{matrix} \right. & \langle x < \sigma_{p} \geq \frac{\hbar}{2} & \langle y_{1} & y_{2} & \langle y_{1} & w_{1} \rangle \\ \psi_{1}(x) = \frac{i}{\hbar \kappa} \left(A_{-} e^{ik_{x}x} + A_{-} e^{ik_{x}x} \right) & x < 0 & \langle \overline{0} & \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \hline \psi_{1}(x) = \frac{i}{\hbar \kappa} \left(B_{-} e^{ik_{x}x} + B_{-} e^{ik_{x}x} \right) & x > 0 \\ \psi_{1}(x) = \frac{1}{\hbar \kappa} \left(B_{-} e^{ik_{x}x} + B_{-} e^{ik_{x}x} \right) & x > 0 \\ \hline T | j, m \rangle \equiv |T(j,m)\rangle = (-1)^{j-m} | j \cdot m \rangle \end{split}$$
i九录Ψ(r,t)=ĤΨ(r,t) (Y)AB=∑cij(i)A⊗lj)B $P[a \le X \le b] = \iint_{n} \iint_{n} V(x, p) dp dx \quad H_{n}(x) = (-1)^{n} e^{x^{2}} \frac{d}{dx^{n}} (e^{-x^{2}}) \quad \xrightarrow{i \ge m^{2}}_{n} \frac{i \ge m^{2}}{dx^{n}} e^{-x^{2}}$ $U(t) = \exp\left(\frac{-iHt}{\hbar}\right) \bigoplus_{k \in \mathbb{Z}} i\hbar \frac{d}{dt} |\Psi(t)\rangle = H|\Psi(t)\rangle$ $= \sum_{x \neq x} P(a,b) = \int d\lambda \cdot P(\lambda) \cdot P_{\lambda}(a,\lambda) \cdot P_{\beta}(b,\lambda)$ $\begin{array}{c} h_{-1}^{A} \bigvee \bigvee \bigvee \bigvee (1 - \frac{1}{(\pi + h)^{3}} \exp\left[-\alpha^{2} \left(x - \frac{pt}{m}\right)^{2}\right] \\ \xrightarrow{\mu = 0} & (x - \frac{pt}{m})^{2} \end{array}$

Hardware architectures

Numerical Physics Code

Topology & Geometry

GDR GPL – June 7th, 2022 – Vannes, France

Data & Data structures

Vincent Reverdy - Software Complexity in Computational Sciences

Algorithms & Numerical methods

Parallelism & Concurrency

5. Genericity

6. Expressivity

7. Conclusions

Combining individual components

2. Problem

GDR GPL – June 7th, 2022 – Vannes, France

Vincent Reverdy – Software Complexity in Computational Sciences

5. Genericity

6. Expressivity

7. Conclusions

Combining individual components

2. Problem

GDR GPL – June 7th, 2022 – Vannes, France

Vincent Reverdy – Software Complexity in Computational Sciences

GDR GPL – June 7th, 2022 – Vannes, France

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions			
A practical	A practical guiding framework								
1 Int	roduction	An introd	uctory tale						
2 P	roblem	Framing 1	he problem	n of softwa	re complexity				
3 Fro	amework	A practice	al guiding f	ramework					
4 Per	formance	Exploring	performar	ce concern	5				
5 G	enericity	Exploring	genericity	and abstra	ction strateg	es			
6 E x	oressivity	Exploring	expressivi	ty and DSL	5				
7 Co	nclusions	Facing the	e wall of so	oftware con	plexity				

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions
Practical des	ian principles					

Handling software complexity

- Generally guided by practical development principles
- Not coming from theoretical proofs

Design patterns

- Creational patterns
- Structural patterns
- Behavioral patterns
- Concurrency patterns
- Functional patterns

Tools

- Unit tests
- Autocompletion
- Static analysis

Coding principles

- Liskov substitution principle
- Law of Demeter
- Composition over inheritance
- Rule of three

Development strategies

- Lean development
- DevOps
- Agile
- SCRUM

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions
A convergin	g iterative pr	ocess				
Expectation		3.5 3.0 2.5 1.5 1.0 0.5 0.0 3 2	Gene	ricity	Aim	
		Pe	erformance	Expressivi		
Reality						

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions		
Exploring p	performance co	ncerns						
1 Ini	roduction	An introd	uctory tale					
2	Problem	Framing 1	he problem	of softwa	re complexity			
3 Fr	amework	A practice	A practical guiding framework					
4 Per	rformance	Exploring	performan	ce concern	5			
5 G	enericity	Exploring	genericity	and abstra	ction strategi	ies		
6 Ex	pressivity	Exploring	expressivi	ty and DSL	•			
7 Co	onclusions	Facing the	e wall of so	ftware con	plexity			

4. Performance

5. Genericity

6. Expressivity

7. Conclusions

Ensuring best possible performances

2. Problem

Vincent Reverdy – Software Complexity in Computational Sciences

4. Performance

5. Genericity

High-performance computational sciences when software complexity is the bottleneck

Software

- Combinatorial explosion of complexity
- Low-level optimization opportunities

2. Problem

Hardware

6. Expressivity

- Pure performance still grows exponentially
- Explosion of optimization opportunities

New bottlenecks

- Development time
- Human resources

Not bottlenecks anymore

- Hardware capabilities
- Pure performance

Consequence

Software always lags far behind hardware

In first-order approximation

Computational power can be considered as infinite at time of development

GDR GPL – June 7th, 2022 – Vannes, France

Vincent Reverdy – Software Complexity in Computational Sciences

1. Introduction	2. Problem	3. Framework4. Performance5. Genericity6. Expressivity7. Conclusions							
Explorin	Exploring genericity and abstraction strategies								
1	Introduction	An introd	uctory tale						
2	Problem	Framing	the problem	n of softwa	re complexity	/			
3	Framework	A practice	A practical guiding framework						
А	Performance	Exploring	performan	ce concern	5				
	Chormanice	Exploring			5				
5	Genericity	Exploring	genericity	and abstra	ction strateg	ies			
_		_							
6	Expressivity	Exploring	expressivi	ty and DSL	5				
				<u>(-</u>					
7	Conclusions	Facing the	e wall of so	ttware con	plexity				

In numerical physics

In maths

Components \neq Vector

 \vec{v} : independence from change of basis

GDR GPL – June 7th, 2022 – Vannes, France

Vincent Reverdy - Software Complexity in Computational Sciences

Amplification of conceptual approximations

Illustrative Software Stack

Conceptual approximations get amplified through higher layers of abstractions

"Almost right" can quickly transform into "Totally wrong"

2. Problem

4. Performance

5. Genericity

6. Expressivity

7. Conclusions

Bottom-up approaches tend to work better to find the right abstractions

Bottom-up approach

- Accumulate concrete examples first
- Let abstractions emerge from details

Programming languages vs human languages

- Human concepts ≠ Computer concepts
- Human languages are fuzzy by nature
- Programming languages need rigorous definitions

Looking for all possible constraints

- More use cases \Rightarrow More constraints on abstractions
- Starting with everything one may want
- Looking for the weirdest applications
- Finding boundaries

Remove constraints one by one

- Some use cases add more constraints than others
- Start by removing corner cases that add strong constraints

Software architecture is not about what one **can** have it's about **deciding** what one **cannot** have

Concept-based programming

Allow to define mathematical classes of types

Object Oriented Programming

- Monolithic type hierarchies
- Context-independent hierarchies
- Top-down approach

Concept-based Programming

- Named sets of constraints
- Context-dependent constraints
- Bottom-up approach

$$x:T \qquad x \to \sqrt{x}$$

$$v:T,i:U \quad (v,i) \to v[i]$$

T should be a container U should be an integer

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions
Exploring ex	xpressivity and	DSLs				
1 Int	roduction	An introd	luctory tale			
2 P	roblem	Framing	the problen	n of softwa	re complexit	У
3 Fro	mework	A practical guiding framework				
4 Per	formance	Exploring	g performar	ice concerns	5	
5 G	enericity	Exploring	genericity	and abstra	ction strateg	jies
6 Exp	oressivity	Exploring	g expressivi	ty and DSL	5	
7 Co	nclusions	Facing th	e wall of so	oftware con	plexity	

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions
Defining expr	essivity					

	Practical definition	
Ease-of-use		
Clear		
Concise		
Precise		
 Accurate 		

Formal definition

See "On the expressive power of programming languages, Science of Computer Programming, M. Felleisen, Science of Computer Programming, 1991"

1. Introduction

2. Problem 3. Framework

4. Performance

ance

5. Genericity

6. Expressivity

7. Conclusions

Symbolic calculus in C++

	Symbolic calculus with matrices
00	<pre>int main(int argc, char* argv[]) {</pre>
01	// Defining 2D dynamic array type
02	<pre>using matrix = decltype(ndarray<double, shape()()="">);</double,></pre>
03	
04	// Defining symbols
05	symbolic a;
06	symbolic X;
07	symbolic Y;
08	symbolic Z;
09	
10	// Loading data
11	<pre>matrix x = read_data("xdata.csv");</pre>
12	<pre>matrix y = read_data("ydata.csv");</pre>
13	<pre>matrix z = read_data("zdata.csv");</pre>
14	$\operatorname{matrix} z = \operatorname{read}_\operatorname{data}(\operatorname{zdata.esv}),$
15	// Symbolic formula
	// Symbolic formula
16 17	formula f = a * X * transpose(Y) * Z;
18	// Computation
19	// Computation return $f(x - 0.5, X - x, X - y, 7 - z)$:
	return $f(a = 0.5, X = x, Y = y, Z = z);$
20	}

4. Performance

5. Genericity

6. Expressivity

7. Conclusions

Designing Domain Specific Languages

2. Problem

Most important principle

Start with what users should be able to write

Interdisciplinarity

- Start from application domain
- Reverse engineer grammar rules from application domain

AST manipulation

- DSL: Domain-Specific Languages: Create new languages with new compilers
- EDSL: Embedded Domain-Specific Languages: Use metaprogramming for AST manipulation

Current state of affairs

- Compilers generally have no idea what the end user has in mind
- Information is lost in between the user and the compiler
- Compilers try to guess the information that has been lost

Code transformation

High-level information is useful information to be exploited for code transformation

Keeping the structure

Reflecting the structure of application domain abstractions in the structure of programs

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions			
Facing the w	Facing the wall of software complexity								
1 Intr	oduction	An introc	luctory tale						
2 P	roblem	Framing	the problen	n of softwa	re complexit	У			
3 Fra	mework	A practic	A practical guiding framework						
4 Per	formance	Exploring	g performar	nce concern	15				
5 Ge	enericity	Exploring	g genericity	and abstro	action strateg	jies			
6 Exp	oressivity	Exploring	g expressivi	ty and DSL	S				
7 Co	nclusions	Facing th	e wall of so	oftware cor	nplexity				

 1. Introduction
 2. Problem
 3. Framework
 4. Performance
 5. Genericity
 6. Expressivity
 7. Conclusions

 Summary: 3) Working on programming languages can allow to reduce this complexity

domains

science

1. Introduction	2. Problem	3. Framework	4. Performance	5. Genericity	6. Expressivity	7. Conclusions
Conclusions						
			Performance			

In first-order approximation, computational power can be considered as infinite at time of development

Genericity

- Conceptual approximations get amplified through higher layers of abstractions
- Concept-based design using bottom-up approach can help

Expressivity

- Starting with what users should be able to write
- Pass as much high-level information as possible to compilers
- Reflecting the structure of the application domain into the structure of programs

The wall of software complexity

- Many application domains are facing or will soon face a problem of structural code complexity
- It's anything but a technical problem and will require computer science approaches
- Research in programming languages and compilers can help

Thank you for your attention

Any question?

