o UCGA
Automatic verification of low-level code: universite
Grenoble Alpes

C, assembly and binary

Frédéric Recoules CEA, List

Marie-Laure Potet Grenoble INP Director
Richard Bonichon Nomadic Labs Supervisor
Sébastien Bardin CEA, List Supervisor

Journées nationales du GDR GPL, June 7th 2022 \/
erimac

Today’s challenge :
mixed C & inline assembly code

Inline assembly example (bits/strings.h@glibc_2.19)

1563 # ifdef __PIC__

1565 __STRING_INLINE size_t

1566 __strcspn_g (const char *__s, const char *__reject)
1567

1568 register unsigned long int __dO, __dl, __d2;
1569 register const char *__res;

1570 __asm__ __volatile_ _

1571 ("pushl ebx\n\t"

1572 "movl %4, %hedi\n\t"

1573 "cld\n\t"

1574 "repne; scasb\n\t"

1575 "notl %hecx\n\t"

1576 "leal -1(hhecx) , %hebx\n"

1577 "1:\n\t"

1578 "lodsb\n\t"

1579 "testb Whal,%%al\n\t"

1580 "je 2f\n\t"

1581 "movl %4, %hedi\n\t"

1582 "movl %hebx, hhecx\n\t"

1583 "repne; scasb\n\t"

1584 "jne 1b\n"

1585 "2:\n\t"

1586 "popl Whebx"

1587 : "=8" (__res), "=ka" (__d0), "=&c" (__d1), "=&D" (__d2)
1588 2 "r" (__reject), "0" (__s), "1" (0), "2" (Oxffffffff)
1589 : "memory", "cc");

1590 return (__res - 1) - __s;

1591 ¥

1618

Inline assembly is well spread

\ Tk packages

\
/

N Found x86 chunks i %FFweec ALSA
in 202 packages
- GMP libyuv

~

Laccording to Rigger et al.

Adapting formal methods to

common software is challenging

Inline assembly makes C analyzers ineffective

KA, ooomo ©

WARNING: function "main" has inline asm done for function main
ERROR: inline assembly is unsupported ====== VALUES COMPUTED ======
NOTE: ignoring this error at this location Values at end of function mid_pred:
A @ [E=co==] i € [-5..5] expected
done: total instructions = 161 Values at end of function main:
done: completed paths = 1 a e {0; 1; 2; 3; 4; 5}
done: generated tests = 1 b € [-5..10]
c € [-10..0]
A @ [F=cc==] i € [-5..5] expected

Incomplete Imprecise

“GCC-style inline assembly is
notoriously
hard to write correctly”

Oliver Stannard,
ARM Senior Software Engineer on Ilvm threads, 2018

A few known inline assembly bugs ¥¥

= strcspn
glibc — Mars 1998 .. January 1999

= compare_double_and_swap_double
libatomic_ops — February 2008 .. Mars 2012

= compare_double_and_swap_double
libatomic_ops — Mars 2012 .. September 2012

= bswap
libtomcrypt — April 2005 .. November 2012

GNU-style interface is really error-prone

Goals & challenges

Interface compliance

must ensure that no bug lies in the interface

Enable formal verification

must allow to perform verification of mixed C & inline assembly code

Widely applicable

must be as much architecture, compiler and analysis agnostic

m arm <G{C;§/ ‘;’J) W B a etc.

Prior work on inline assembly

Manual Goanna! V/x862 Inception3‘GoaI

Interface compliance v v N/a X ‘ v
Enable formal verification v X v v ‘ v
Widely applicable X X X v ‘ v

lFehnker et al. Some Assembly Required - Program Analysis of Embedded System Code
2Schu|te et al. Vx86: x86 Assembler Simulated in C Powered by Automated Theorem Proving

3Corteggiani et al. Inception: System-Wide Security Testing of Real-World Embedded Systems Software

https://www.researchgate.net/publication/220703668_Some_Assembly_Required_-_Program_Analysis_of_Embedded_System_Code
https://www.microsoft.com/en-us/research/publication/vx86-x86-assembler-simulated-in-c-powered-by-automated-theorem-proving/
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani

Contributions

A operational semantics for inline assembly

= an operational semantics between C & binary

= a method to automatically extract inline assembly semantics (TINA-core)

A method to , and the interface

= comprehensive formalization of
(conditions & condition) [ICSE 2021]
= thorough experiments with RUSTINA over 2.6k* real-world chunks

(severe issues found, 803 patches, 7 package patch accepted) G

= a study of current bad coding practices
(6 recurrent patterns yield 90% of issues, including 5 patterns)

A , lifting method

= first lifting
= tailored post-lifting validation pass [ASE 2019]

= experiments with TINA over KLEE and Frama-C

The interface compliance challenge

Inline assembly example (atomic_ops/sysdeps/gcc/x86.h)

AO_INLINE int

AQ0_compare_double_and_swap_double_full(volatile AO_double_t *addr,
AO_t old_vall, AO_t old_val2,
AD_t new_vall, AO_t new_val2)

¢ char result; Assembly template

[...]

__asm__ __volatile__(/"xchg "/a%ebx;'f{,_@j " /* swap GOT ptr and new_vall */
"lock; cmpxchg8b .%02 setz ,%1} 0

Output list "xchg %%ebx {63 " /* restore ebz and edi */
~~("=n" (*addr), "=a"(result))
: "'m" (*addr), "d" (old_val2), "a" (old_vall)),
Input list "c" (new_val2), "D" (new_vall)| : ("memory");
[...]
return (int) result; Clobber list

10

This code works fine prior to GCC 5.0,
then suddenly crashes with a
Segmentation fault

= compiler knowledge is limited to the interface
= register allocation and optimizations rely on it

» code-interface mismatches can lead to bugs

Goals & challenges

Define interface compliance

must be built on a currently missing proper formalization
indeed there is not even a complete documentation...

Check, Patch & Refine

must be able to check whether an assembly chunk is compliant
ideally, should suggest a patch for the non compliant ones

Widely applicable

must be as much compiler agnostic ‘chﬁ? \) (inteD

C compiler

11

Contributions (1/2)

A of interface of compliance

= support GCC, Clang and mostly icc

] condition & condition

A method to , and the interface

= dataflow analysis + dedicated optimizations

= infer an over-approximation of the ideal interface

12

Interface compliance properties

Frame-write

Only clobber registers and output location are allowed to be modified
by the assembly template

Frame-read

All read values must be initialized — only input dependent values are
allowed in output productions, memory addressing and branching

condition
Unicity

The instruction behavior must not depend on the compiler choices

13

Interface compliance properties

Frame-write. V1 ¢B%US®; S(1) = exec(S, C'<T>)(1)
Only clobber registers and output location are allowed to be modified
by the assembly template

21
Frame-read. exec(S;, C'<T>) S exec(Sy, C'<T>)

)

All read values must be initialized — only input dependent values are
allowed in output productions, memory addressing and branching

condition
- . 21,1 t
Unicity. exec(S;, C'<T1>) S exec(Sy, C'<Tp>)

The instruction behavior must not depend on the compiler choices
(Unicity implies Frame-read)

13

Contributions (2/2)

Thorough experiments of our prototype

= 2.6k" real-world assembly chunks ()
» 2183 issues, including issues
= 2000 patches, including fixes

» 7 packages have already accepted the fixes

https://github.com/binsec/icse2021-artifact992 [EEICENIGREIE

A study of current inline assembly bad coding practices

= 6 recurrent patterns yield 90% of issues

= 5 patterns rely on assumptions
(80% of severe issues)

14

https://github.com/binsec/icse2021-artifact992

Checking and patching statistics

Initial Patched
Over 2656 chunks

code code
fully compliant
Found issues 2183 183 i
| significant issues 986 183
frame-write 1718 0 B .
U - flag register clobbered 1197 0 sertous fssues
© - read-only input clobbered 17 0
© - unbound register clobbered 436 0 Sl
© - unbound memory access 68 0 Over 202 packages
frame-read 379 183 e
© - non written write-only output 19 0 e
© - unbound register read 183 183
© - unbound memory access 177 0
unicity 86 0

serious issues
benign issues

Total time: 2min — Average time per chunk: 15

Common bad coding practices

6 recurrent patterns yield 90% of issues
5 of them can lead to bugs

Pattern Omitted clobber Implicit protection Robust? # issues
P1- ‘"cc" compiler choice 1197
P2 - Yebx register compiler choice O (GCC = 5) + ¥¥ 30
P3 — Yesp register compiler choice © (GCC = 4.6) + ¥¥ b
P4 - '"memory" function embedding @ (inlining, cloning) + ¥ 285
P5 - MMX register ABI © (inlining, cloning) 363
P6 — XMM register compiler option © (cloning) 109
792 80%

: does not break — @ : has been broken — ¥ : known bug

16

Real-life impact of RUSTINA

Submitted patches

= 114 faulty chunks in 8 packages (7 applied)

" t ALSA
ibtomcryp
- Z)FFMPEG

haproxy

UDPCast X264 libatomic_ops

17

Verification-oriented lifting

Inline assembly makes C analyzers ineffective

KA,

WARNING: function "main" has inline asm
ERROR: inline assembly is unsupported
NOTE: ignoring this error at this location

done: total instructions = 161

done: completed paths = 1
done: generated tests = 1

Incomplete

ool

done for function main
====== VALUES COMPUTED ======
Values at end of function mid_pred:
A @ [E=co==] i € [-5..5] expected
Values at end of function main:
a € {0; 1; 2; 3; 4; 5}

b e [-5..10]
c € [-10..0]
A @ [F=cc==] i € [-5..5] expected

Imprecise

18

Common workarounds

int mid_pred (int a, int b, int ¢) {

mel o Manual handling
#1ifndef DISABLE_ASM
__asm__ 2 o
(emp %2, %1 \n\t manpower intensive
"cmovg %1, %0 \n\t"
"cmovg %2, %1 \n\t" error prone

"cmp %3, %1 \n\t"
"cmovl %3, %1 \n\t"
"cmp %1, %0 \n\t"

"cmovg %1, %0 \n\t" Dedicated analyzer
co"4grt (i), "+&r" (a)
L e @ substantial engineering effort
i = max(a, b);
a = min(a, b);
a = max(a, c);

i =min(i, a);
#endif
return i;

}

19

Our proposition

Automatically lift ASM to equivalent C

Lift

Reuse C tools

20

Goals & challenges

Verification friendly

decent enough analysis outputs for verification process

Trustable

usable in sound formal method context

Widely applicable

must be generic and verification technique agnostic

/
NAA, oo © s 000m0° Wwp o

21

Contributions

Dedicated high-level structure recovery mechanism
= identify 3 main threats to verifiability
= dedicated rexriting steps
Tailored validation pass
= preserve control flow graph isomorphism
= SMT based basic block equivalence checking
Thorough experiments of our prototype

" % validation of lifted chunks

= positive impact of TINA for 3 standard verification tools
(KLEE, Frama-C EVA, Frama-C WP)

22

Verification-oriented lifting

original basic lifting TINA lifting
_-asm__ __eax__ = (unsigned int)i; int __tmp__;
(¢ __ebx__ = (unsigned int)a; if (a > 1)
"emp %0, %1 \n\t" __res32__ = __ebx__ - __eax__; __tmp__ = a;
"cmovg %1, %0 \n\t" __res32__ else
/AL ...] * (int)__res32__ < 0; __tmp__ = i;
"+gr' (i), "+&r" (a) ((__ebx__ >> 31) i= __tmp__;
sk [0 T ¥/ != (__eax__ >> 31))
: /* no clobbers */ & ((__ebx__ >> 31)
N != (__res32__ >> 31));
if (__zf__ & __sf__ == __of__)

high-level predicate
goto 11;

unpacking

; goto 13;
goto 13;

T1. low-level data & computation expression propagation

loop normalization

T3. unusual & unstructured control flow

'
'

T2. low-level packing & representation : 13:
' 3:
'
'

23

Verifiability of lifted code

Frama-C WP

Analvsi KLEE Frama-C EVA
nalysis
y symbolic execution abstract interpretation deductive verification
Number of Number of Number of
Criterion | explored paths in functions without fully discharged
10m timeout alarms proofs
NONE | 1 336k 0/ 58 0/12
oo
£ Basic | 1 459k 12 / 58 1/12
—
TINA | 6 402k 19 / 58 12 /12

24

Summary

A operational semantics for inline assembly

= an operational semantics between C & binary

= a method to automatically extract inline assembly semantics (TINA-core)

A method to , and the interface

= comprehensive formalization of
(conditions & condition) [ICSE 2021]
= thorough experiments with RUSTINA over 2.6k* real-world chunks

(severe issues found, 803 patches, 7 package patch accepted) G

= a study of current bad coding practices
(6 recurrent patterns yield 90% of issues, including 5 patterns)

A , lifting method

= first lifting
= tailored post-lifting validation pass [ASE 2019]

= experiments with TINA over KLEE and Frama-C

25

Thank you
for your attention

Summary

A operational semantics for inline assembly

= an operational semantics between C & binary

= a method to automatically extract inline assembly semantics (TINA-core)

A method to , and the interface

= comprehensive formalization of
(conditions & condition) [ICSE 2021]
= thorough experiments with RUSTINA over 2.6k* real-world chunks

(severe issues found, 803 patches, 7 package patch accepted) G

= a study of current bad coding practices
(6 recurrent patterns yield 90% of issues, including 5 patterns)

A , lifting method

= first lifting
= tailored post-lifting validation pass [ASE 2019]

= experiments with TINA over KLEE and Frama-C

26

