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Today’s challenge :
mixed C & inline assembly code

0



Inline assembly example (bits/strings.h@glibc_2.19)

1563 # ifdef __PIC__

1565 __STRING_INLINE size_t
1566 __strcspn_g (const char *__s, const char *__reject)
1567 {
1568 register unsigned long int __d0, __d1, __d2;
1569 register const char *__res;
1570 __asm__ __volatile__
1571 ("pushl %%ebx\n\t"
1572 "movl %4,%%edi\n\t"
1573 "cld\n\t"
1574 "repne; scasb\n\t"
1575 "notl %%ecx\n\t"
1576 "leal -1(%%ecx),%%ebx\n"
1577 "1:\n\t"
1578 "lodsb\n\t"
1579 "testb %%al,%%al\n\t"
1580 "je 2f\n\t"
1581 "movl %4,%%edi\n\t"
1582 "movl %%ebx,%%ecx\n\t"
1583 "repne; scasb\n\t"
1584 "jne 1b\n"
1585 "2:\n\t"
1586 "popl %%ebx"
1587 : "=S" (__res), "=&a" (__d0), "=&c" (__d1), "=&D" (__d2)
1588 : "r" (__reject), "0" (__s), "1" (0), "2" (0xffffffff)
1589 : "memory", "cc");
1590 return (__res - 1) - __s;
1591 }

1618 # endif
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Inline assembly is well spread

7k packages

786
11%

Found 3107 x86 chunks
in 202 packages

Found 3107 x86 chunks
in 202 packages

1264
projets

355
28%1

ALSA

GMP libyuv
1according to Rigger et al.

2



Adapting formal methods to
common software is challenging
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Inline assembly makes C analyzers ineffective

WARNING: function "main" has inline asm
ERROR: inline assembly is unsupported
NOTE: ignoring this error at this location

done: total instructions = 161
done: completed paths = 1
done: generated tests = 1

done for function main
====== VALUES COMPUTED ======
Values at end of function mid_pred:

i ∈ [--..--] i ∈ [-5..5] expected
Values at end of function main:

a ∈ {0; 1; 2; 3; 4; 5}
b ∈ [-5..10]
c ∈ [-10..0]
i ∈ [--..--] i ∈ [-5..5] expected

Incomplete Imprecise
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“GCC-style inline assembly is
notoriously

hard to write correctly”

Oliver Stannard,
ARM Senior Software Engineer on llvm threads, 2018
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A few known inline assembly bugs 

• strcspn
glibc – Mars 1998 .. January 1999

• compare_double_and_swap_double
libatomic_ops – February 2008 .. Mars 2012

• compare_double_and_swap_double
libatomic_ops – Mars 2012 .. September 2012

• bswap
libtomcrypt – April 2005 .. November 2012

GNU-style interface is really error-prone
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Goals & challenges

Interface compliance

must ensure that no bug lies in the interface

Enable formal verification

must allow to perform verification of mixed C & inline assembly code

Widely applicable

must be as much architecture, compiler and analysis agnostic

etc.
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Prior work on inline assembly

Manual Goanna1 Vx862 Inception3 Goal

Interface compliance ✓ ✓ N/a × ✓

Enable formal verification ✓ × ✓ ✓ ✓

Widely applicable × × × ✓ ✓

1Fehnker et al. Some Assembly Required - Program Analysis of Embedded System Code
2Schulte et al. Vx86: x86 Assembler Simulated in C Powered by Automated Theorem Proving
3Corteggiani et al. Inception: System-Wide Security Testing of Real-World Embedded Systems Software
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https://www.microsoft.com/en-us/research/publication/vx86-x86-assembler-simulated-in-c-powered-by-automated-theorem-proving/
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani


Contributions

A novel operational semantics for inline assembly
• an operational semantics between C & binary

• a method to automatically extract inline assembly semantics (TINA-core)

A method to check, patch and refine the interface
• comprehensive formalization of interface compliance

(Framing conditions & Unicity condition)

• thorough experiments with RUSTINA over 2.6k+ real-world chunks
(986 severe issues found, 803 patches, 7 package patch accepted)

• a study of current bad coding practices
(6 recurrent patterns yield 90% of issues, including 5 fragile patterns)

A trustworthy, verification-oriented lifting method
• first verification friendly lifting

• tailored post-lifting validation pass

• experiments with TINA over KLEE and Frama-C

[ICSE 2021]

[ASE 2019]
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The interface compliance challenge
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Inline assembly example (atomic_ops/sysdeps/gcc/x86.h)

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,

AO_t old_val1, AO_t old_val2,
AO_t new_val1, AO_t new_val2)

{
char result;
[...]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_val1 */

"lock; cmpxchg8b %0; setz %1;"
"xchg %%ebx,%6;" /* restore ebx and edi */
: "=m"(*addr), "=a"(result)
: "m"(*addr), "d" (old_val2), "a" (old_val1),

"c" (new_val2), "D" (new_val1) : "memory");
[...]
return (int) result;

}

Assembly template

Output list

Input list
Clobber list
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This code works fine prior to GCC 5.0,
then suddenly crashes with a

Segmentation fault

• compiler knowledge is limited to the interface
• register allocation and optimizations rely on it
• code-interface mismatches can lead to bugs
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Goals & challenges

Define interface compliance

must be built on a currently missing proper formalization
indeed there is not even a complete documentation...

Check, Patch & Refine

must be able to check whether an assembly chunk is compliant
ideally, should suggest a patch for the non compliant ones

Widely applicable

must be as much compiler agnostic
C compiler
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Contributions (1/2)

A formalization of interface of compliance

• support GCC, Clang and mostly icc
• Framing condition & Unicity condition

A method to check, patch and refine the interface

• dataflow analysis + dedicated optimizations
• infer an over-approximation of the ideal interface
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Interface compliance properties

Frame-write

. ∀l ̸∈ BO∪SC; S(l) = exec(S, Cι<T>)(l)

Only clobber registers and output location are allowed to be modified
by the assembly template

Frame-read

. exec(S1, Cι<T>)
♦∼=T

BO,F
exec(S2, Cι<T>)

All read values must be initialized – only input dependent values are
allowed in output productions, memory addressing and branching
condition

Unicity

. exec(S1, Cι<T1>)
♦∼=T1,T2

BO,F
exec(S2, Cι<T2>)

The instruction behavior must not depend on the compiler choices

(Unicity implies Frame-read)
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Interface compliance properties

Frame-write. ∀l ̸∈ BO∪SC; S(l) = exec(S, Cι<T>)(l)

Only clobber registers and output location are allowed to be modified
by the assembly template

Frame-read. exec(S1, Cι<T>)
♦∼=T

BO,F
exec(S2, Cι<T>)

All read values must be initialized – only input dependent values are
allowed in output productions, memory addressing and branching
condition

Unicity. exec(S1, Cι<T1>)
♦∼=T1,T2

BO,F
exec(S2, Cι<T2>)

The instruction behavior must not depend on the compiler choices
(Unicity implies Frame-read)
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Contributions (2/2)

Thorough experiments of our prototype

• 2.6k+ real-world assembly chunks (Debian)
• 2183 issues, including 986 severe issues
• 2000 patches, including 803 severe fixes
• 7 packages have already accepted the fixes

https://github.com/binsec/icse2021-artifact992

A study of current inline assembly bad coding practices

• 6 recurrent patterns yield 90% of issues
• 5 patterns rely on fragile assumptions

(80% of severe issues)
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Checking and patching statistics

Initial Patched
code code

Found issues 2183 183
significant issues 986 183

frame-write 1718 0
 – flag register clobbered 1197 0
 – read-only input clobbered 17 0
 – unbound register clobbered 436 0
 – unbound memory access 68 0

frame-read 379 183
 – non written write-only output 19 0
 – unbound register read 183 183
 – unbound memory access 177 0

unicity 86 0

Total time: 2min – Average time per chunk: 40ms

Over 2656 chunks

49%

fully compliant

Initial

40%

benign issues

11%
serious issues

97%

3%

Patched

Over 202 packages

58%

fully compliant

Initial

15%

benign issues

27%

serious issues

88%

12%
Patched
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Common bad coding practices

6 recurrent patterns yield 90% of issues
5 of them can lead to bugs

Pattern Omitted clobber Implicit protection Robust? # issues

P1 – "cc" compiler choice  1197

P2 – %ebx register compiler choice  (GCC ≥ 5) +  30
P3 – %esp register compiler choice  (GCC ≥ 4.6) +  5
P4 – "memory" function embedding  (inlining, cloning) +  285
P5 – MMX register ABI  (inlining, cloning) 363
P6 – XMM register compiler option  (cloning) 109

792 80%

 : does not break –  : has been broken –  : known bug
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Real-life impact of RUSTINA

Submitted patches
• 114 faulty chunks in 8 packages (7 applied)

• 538 severe issues

x264

ALSA

haproxy

libtomcrypt

libatomic_ops

xfstt

UDPCast
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Verification-oriented lifting

17



Inline assembly makes C analyzers ineffective

WARNING: function "main" has inline asm
ERROR: inline assembly is unsupported
NOTE: ignoring this error at this location

done: total instructions = 161
done: completed paths = 1
done: generated tests = 1

done for function main
====== VALUES COMPUTED ======
Values at end of function mid_pred:

i ∈ [--..--] i ∈ [-5..5] expected
Values at end of function main:

a ∈ {0; 1; 2; 3; 4; 5}
b ∈ [-5..10]
c ∈ [-10..0]
i ∈ [--..--] i ∈ [-5..5] expected

Incomplete Imprecise
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Common workarounds

int mid_pred (int a, int b, int c) {
int i = b;

# ifndef DISABLE_ASM
__asm__

("cmp %2, %1 \n\t"
"cmovg %1, %0 \n\t"
"cmovg %2, %1 \n\t"
"cmp %3, %1 \n\t"
"cmovl %3, %1 \n\t"
"cmp %1, %0 \n\t"
"cmovg %1, %0 \n\t"
: "+&r" (i), "+&r" (a)
: "r" (b), "r" (c));

# else
i = max(a, b);
a = min(a, b);
a = max(a, c);
i = min(i, a);

# endif
return i;

}

Manual handling
manpower intensive
error prone

Dedicated analyzer
substantial engineering effort
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Our proposition

Automatically lift ASM to equivalent C

Reuse C tools

int mid_pred (int a, int b, int c)
{

int i = b;
__asm__ ("cmp %2, %1 \n\t"

"cmovg %1, %0 \n\t"
"cmovg %2, %1 \n\t"
"cmp %3, %1 \n\t"
"cmovl %3, %1 \n\t"
"cmp %1, %0 \n\t"
"cmovg %1, %0 \n\t"
: "+&r" (i), "+&r" (a)
: "r" (b), "r" (c));

return i;
}

C + ASM

int mid_pred (int a, int b, int c)
{

int i = b;
{

int __tina_tmp3, __tina_tmp2;
int __tina_tmp1, __tina_tmp4;
__TINA_BEGIN_1__: ;
if (a > b) __tina_tmp3 = a;
else __tina_tmp3 = i;
if (a > b) __tina_tmp2 = b;
else __tina_tmp2 = a;
if (__tina_tmp2 < c) __tina_tmp1 = c;
else __tina_tmp1 = __tina_tmp2;
if (__tina_tmp3 > __tina_tmp1)

__tina_tmp4 = __tina_tmp1;
else __tina_tmp4 = __tina_tmp3;
i = __tina_tmp4;
__TINA_END_1__: ;

}
return i;

}
C only

Lift Analyze
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Goals & challenges

Verification friendly

decent enough analysis outputs for verification process

Trustable

usable in sound formal method context

Widely applicable

must be generic and verification technique agnostic

EVA WP etc.
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Contributions

Dedicated high-level structure recovery mechanism

• identify 3 main threats to verifiability

• dedicated rexriting steps

Tailored validation pass

• preserve control flow graph isomorphism

• SMT based basic block equivalence checking

Thorough experiments of our prototype

• 100% validation of lifted chunks

• positive impact of TINA for 3 standard verification tools
(KLEE, Frama-C EVA, Frama-C WP)
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Verification-oriented lifting

__asm__

(

"cmp %0, %1 \n\t"

"cmovg %1, %0 \n\t"

/* [ ... ] */

: "+&r" (i), "+&r" (a)

: /* [ ... ] */

: /* no clobbers */

);

__eax__ = (unsigned int)i;

__ebx__ = (unsigned int)a;

__res32__ = __ebx__ - __eax__;

__zf__ = __res32__ == 0u;

__sf__ = (int)__res32__ < 0;

__of__ = ((__ebx__ >> 31)

!= (__eax__ >> 31))

& ((__ebx__ >> 31)

!= (__res32__ >> 31));

if (!__zf__ & __sf__ == __of__)

goto l1;

else goto l2;

l1: __tmp__ = __ebx__; goto l3;

l2: __tmp__ = __eax__; goto l3;

l3: __eax__ = __tmp__;

i = (int)__eax__;

__asm__

(

"cmp %0, %1 \n\t"

"cmovg %1, %0 \n\t"

/* [ ... ] */

: "+&r" (i), "+&r" (a)

: /* [ ... ] */

: /* no clobbers */

);

original
__eax__ = (unsigned int)i;

__ebx__ = (unsigned int)a;

__res32__ = __ebx__ - __eax__;

__zf__ = __res32__ == 0u;

__sf__ = (int)__res32__ < 0;

__of__ = ((__ebx__ >> 31)

!= (__eax__ >> 31))

& ((__ebx__ >> 31)

!= (__res32__ >> 31));

if (!__zf__ & __sf__ == __of__)

goto l1;

else goto l2;

l1: __tmp__ = __ebx__; goto l3;

l2: __tmp__ = __eax__; goto l3;

l3: __eax__ = __tmp__;

i = (int)__eax__;

basic lifting
int __tmp__;

if (a > i)

__tmp__ = a;

else

__tmp__ = i;

i = __tmp__;

TINA lifting

T1. low-level data & computation

T2. low-level packing & representation

T3. unusual & unstructured control flow

• high-level predicate

• unpacking

• expression propagation

• loop normalization
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Verifiability of lifted code

Analysis
KLEE Frama-C EVA Frama-C WP

symbolic execution abstract interpretation deductive verification

Criterion
Number of Number of Number of

explored paths in functions without fully discharged
10m timeout alarms proofs

Li
fti

ng

None 1 336k 0 / 58 0 / 12

Basic 1 459k 12 / 58 1 / 12

TINA 6 402k 19 / 58 12 / 12
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Summary

A novel operational semantics for inline assembly
• an operational semantics between C & binary

• a method to automatically extract inline assembly semantics (TINA-core)

A method to check, patch and refine the interface
• comprehensive formalization of interface compliance

(Framing conditions & Unicity condition)

• thorough experiments with RUSTINA over 2.6k+ real-world chunks
(986 severe issues found, 803 patches, 7 package patch accepted)

• a study of current bad coding practices
(6 recurrent patterns yield 90% of issues, including 5 fragile patterns)

A trustworthy, verification-oriented lifting method
• first verification friendly lifting

• tailored post-lifting validation pass

• experiments with TINA over KLEE and Frama-C

[ICSE 2021]

[ASE 2019]
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Thank you
for your attention
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