
Automatic verification of low-level code:
C, assembly and binary

Frédéric Recoules CEA, List
Marie-Laure Potet Grenoble INP Director
Richard Bonichon Nomadic Labs Supervisor
Sébastien Bardin CEA, List Supervisor

Journées nationales du GDR GPL, June 7th 2022

Today’s challenge :
mixed C & inline assembly code

0

Inline assembly example (bits/strings.h@glibc_2.19)

1563 # ifdef __PIC__

1565 __STRING_INLINE size_t
1566 __strcspn_g (const char *__s, const char *__reject)
1567 {
1568 register unsigned long int __d0, __d1, __d2;
1569 register const char *__res;
1570 __asm__ __volatile__
1571 ("pushl %%ebx\n\t"
1572 "movl %4,%%edi\n\t"
1573 "cld\n\t"
1574 "repne; scasb\n\t"
1575 "notl %%ecx\n\t"
1576 "leal -1(%%ecx),%%ebx\n"
1577 "1:\n\t"
1578 "lodsb\n\t"
1579 "testb %%al,%%al\n\t"
1580 "je 2f\n\t"
1581 "movl %4,%%edi\n\t"
1582 "movl %%ebx,%%ecx\n\t"
1583 "repne; scasb\n\t"
1584 "jne 1b\n"
1585 "2:\n\t"
1586 "popl %%ebx"
1587 : "=S" (__res), "=&a" (__d0), "=&c" (__d1), "=&D" (__d2)
1588 : "r" (__reject), "0" (__s), "1" (0), "2" (0xffffffff)
1589 : "memory", "cc");
1590 return (__res - 1) - __s;
1591 }

1618 # endif

1

Inline assembly is well spread

7k packages

786
11%

Found 3107 x86 chunks
in 202 packages

Found 3107 x86 chunks
in 202 packages

1264
projets

355
28%1

ALSA

GMP libyuv
1according to Rigger et al.

2

Adapting formal methods to
common software is challenging

2

Inline assembly makes C analyzers ineffective

WARNING: function "main" has inline asm
ERROR: inline assembly is unsupported
NOTE: ignoring this error at this location

done: total instructions = 161
done: completed paths = 1
done: generated tests = 1

done for function main
====== VALUES COMPUTED ======
Values at end of function mid_pred:

i ∈ [--..--] i ∈ [-5..5] expected
Values at end of function main:

a ∈ {0; 1; 2; 3; 4; 5}
b ∈ [-5..10]
c ∈ [-10..0]
i ∈ [--..--] i ∈ [-5..5] expected

Incomplete Imprecise

3

“GCC-style inline assembly is
notoriously

hard to write correctly”

Oliver Stannard,
ARM Senior Software Engineer on llvm threads, 2018

3

A few known inline assembly bugs 

• strcspn
glibc – Mars 1998 .. January 1999

• compare_double_and_swap_double
libatomic_ops – February 2008 .. Mars 2012

• compare_double_and_swap_double
libatomic_ops – Mars 2012 .. September 2012

• bswap
libtomcrypt – April 2005 .. November 2012

GNU-style interface is really error-prone

4

Goals & challenges

Interface compliance

must ensure that no bug lies in the interface

Enable formal verification

must allow to perform verification of mixed C & inline assembly code

Widely applicable

must be as much architecture, compiler and analysis agnostic

etc.

5

Prior work on inline assembly

Manual Goanna1 Vx862 Inception3 Goal

Interface compliance ✓ ✓ N/a × ✓

Enable formal verification ✓ × ✓ ✓ ✓

Widely applicable × × × ✓ ✓

1Fehnker et al. Some Assembly Required - Program Analysis of Embedded System Code
2Schulte et al. Vx86: x86 Assembler Simulated in C Powered by Automated Theorem Proving
3Corteggiani et al. Inception: System-Wide Security Testing of Real-World Embedded Systems Software

6

https://www.researchgate.net/publication/220703668_Some_Assembly_Required_-_Program_Analysis_of_Embedded_System_Code
https://www.microsoft.com/en-us/research/publication/vx86-x86-assembler-simulated-in-c-powered-by-automated-theorem-proving/
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani

Contributions

A novel operational semantics for inline assembly
• an operational semantics between C & binary

• a method to automatically extract inline assembly semantics (TINA-core)

A method to check, patch and refine the interface
• comprehensive formalization of interface compliance

(Framing conditions & Unicity condition)

• thorough experiments with RUSTINA over 2.6k+ real-world chunks
(986 severe issues found, 803 patches, 7 package patch accepted)

• a study of current bad coding practices
(6 recurrent patterns yield 90% of issues, including 5 fragile patterns)

A trustworthy, verification-oriented lifting method
• first verification friendly lifting

• tailored post-lifting validation pass

• experiments with TINA over KLEE and Frama-C

[ICSE 2021]

[ASE 2019]

7

The interface compliance challenge

9

Inline assembly example (atomic_ops/sysdeps/gcc/x86.h)

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,

AO_t old_val1, AO_t old_val2,
AO_t new_val1, AO_t new_val2)

{
char result;
[...]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_val1 */

"lock; cmpxchg8b %0; setz %1;"
"xchg %%ebx,%6;" /* restore ebx and edi */
: "=m"(*addr), "=a"(result)
: "m"(*addr), "d" (old_val2), "a" (old_val1),

"c" (new_val2), "D" (new_val1) : "memory");
[...]
return (int) result;

}

Assembly template

Output list

Input list
Clobber list

10

This code works fine prior to GCC 5.0,
then suddenly crashes with a

Segmentation fault

• compiler knowledge is limited to the interface
• register allocation and optimizations rely on it
• code-interface mismatches can lead to bugs

10

Goals & challenges

Define interface compliance

must be built on a currently missing proper formalization
indeed there is not even a complete documentation...

Check, Patch & Refine

must be able to check whether an assembly chunk is compliant
ideally, should suggest a patch for the non compliant ones

Widely applicable

must be as much compiler agnostic
C compiler

11

Contributions (1/2)

A formalization of interface of compliance

• support GCC, Clang and mostly icc
• Framing condition & Unicity condition

A method to check, patch and refine the interface

• dataflow analysis + dedicated optimizations
• infer an over-approximation of the ideal interface

12

Interface compliance properties

Frame-write

. ∀l ̸∈ BO∪SC; S(l) = exec(S, Cι<T>)(l)

Only clobber registers and output location are allowed to be modified
by the assembly template

Frame-read

. exec(S1, Cι<T>)
♦∼=T

BO,F
exec(S2, Cι<T>)

All read values must be initialized – only input dependent values are
allowed in output productions, memory addressing and branching
condition

Unicity

. exec(S1, Cι<T1>)
♦∼=T1,T2

BO,F
exec(S2, Cι<T2>)

The instruction behavior must not depend on the compiler choices

(Unicity implies Frame-read)

13

Interface compliance properties

Frame-write. ∀l ̸∈ BO∪SC; S(l) = exec(S, Cι<T>)(l)

Only clobber registers and output location are allowed to be modified
by the assembly template

Frame-read. exec(S1, Cι<T>)
♦∼=T

BO,F
exec(S2, Cι<T>)

All read values must be initialized – only input dependent values are
allowed in output productions, memory addressing and branching
condition

Unicity. exec(S1, Cι<T1>)
♦∼=T1,T2

BO,F
exec(S2, Cι<T2>)

The instruction behavior must not depend on the compiler choices
(Unicity implies Frame-read)

13

Contributions (2/2)

Thorough experiments of our prototype

• 2.6k+ real-world assembly chunks (Debian)
• 2183 issues, including 986 severe issues
• 2000 patches, including 803 severe fixes
• 7 packages have already accepted the fixes

https://github.com/binsec/icse2021-artifact992

A study of current inline assembly bad coding practices

• 6 recurrent patterns yield 90% of issues
• 5 patterns rely on fragile assumptions

(80% of severe issues)

14

https://github.com/binsec/icse2021-artifact992

Checking and patching statistics

Initial Patched
code code

Found issues 2183 183
significant issues 986 183

frame-write 1718 0
 – flag register clobbered 1197 0
 – read-only input clobbered 17 0
 – unbound register clobbered 436 0
 – unbound memory access 68 0

frame-read 379 183
 – non written write-only output 19 0
 – unbound register read 183 183
 – unbound memory access 177 0

unicity 86 0

Total time: 2min – Average time per chunk: 40ms

Over 2656 chunks

49%

fully compliant

Initial

40%

benign issues

11%
serious issues

97%

3%

Patched

Over 202 packages

58%

fully compliant

Initial

15%

benign issues

27%

serious issues

88%

12%
Patched

15

Common bad coding practices

6 recurrent patterns yield 90% of issues
5 of them can lead to bugs

Pattern Omitted clobber Implicit protection Robust? # issues

P1 – "cc" compiler choice  1197

P2 – %ebx register compiler choice  (GCC ≥ 5) +  30
P3 – %esp register compiler choice  (GCC ≥ 4.6) +  5
P4 – "memory" function embedding  (inlining, cloning) +  285
P5 – MMX register ABI  (inlining, cloning) 363
P6 – XMM register compiler option  (cloning) 109

792 80%

 : does not break –  : has been broken –  : known bug

16

Real-life impact of RUSTINA

Submitted patches
• 114 faulty chunks in 8 packages (7 applied)

• 538 severe issues

x264

ALSA

haproxy

libtomcrypt

libatomic_ops

xfstt

UDPCast

17

Verification-oriented lifting

17

Inline assembly makes C analyzers ineffective

WARNING: function "main" has inline asm
ERROR: inline assembly is unsupported
NOTE: ignoring this error at this location

done: total instructions = 161
done: completed paths = 1
done: generated tests = 1

done for function main
====== VALUES COMPUTED ======
Values at end of function mid_pred:

i ∈ [--..--] i ∈ [-5..5] expected
Values at end of function main:

a ∈ {0; 1; 2; 3; 4; 5}
b ∈ [-5..10]
c ∈ [-10..0]
i ∈ [--..--] i ∈ [-5..5] expected

Incomplete Imprecise

18

Common workarounds

int mid_pred (int a, int b, int c) {
int i = b;

ifndef DISABLE_ASM
__asm__

("cmp %2, %1 \n\t"
"cmovg %1, %0 \n\t"
"cmovg %2, %1 \n\t"
"cmp %3, %1 \n\t"
"cmovl %3, %1 \n\t"
"cmp %1, %0 \n\t"
"cmovg %1, %0 \n\t"
: "+&r" (i), "+&r" (a)
: "r" (b), "r" (c));

else
i = max(a, b);
a = min(a, b);
a = max(a, c);
i = min(i, a);

endif
return i;

}

Manual handling
manpower intensive
error prone

Dedicated analyzer
substantial engineering effort

19

Our proposition

Automatically lift ASM to equivalent C

Reuse C tools

int mid_pred (int a, int b, int c)
{

int i = b;
__asm__ ("cmp %2, %1 \n\t"

"cmovg %1, %0 \n\t"
"cmovg %2, %1 \n\t"
"cmp %3, %1 \n\t"
"cmovl %3, %1 \n\t"
"cmp %1, %0 \n\t"
"cmovg %1, %0 \n\t"
: "+&r" (i), "+&r" (a)
: "r" (b), "r" (c));

return i;
}

C + ASM

int mid_pred (int a, int b, int c)
{

int i = b;
{

int __tina_tmp3, __tina_tmp2;
int __tina_tmp1, __tina_tmp4;
__TINA_BEGIN_1__: ;
if (a > b) __tina_tmp3 = a;
else __tina_tmp3 = i;
if (a > b) __tina_tmp2 = b;
else __tina_tmp2 = a;
if (__tina_tmp2 < c) __tina_tmp1 = c;
else __tina_tmp1 = __tina_tmp2;
if (__tina_tmp3 > __tina_tmp1)

__tina_tmp4 = __tina_tmp1;
else __tina_tmp4 = __tina_tmp3;
i = __tina_tmp4;
__TINA_END_1__: ;

}
return i;

}
C only

Lift Analyze

20

Goals & challenges

Verification friendly

decent enough analysis outputs for verification process

Trustable

usable in sound formal method context

Widely applicable

must be generic and verification technique agnostic

EVA WP etc.

21

Contributions

Dedicated high-level structure recovery mechanism

• identify 3 main threats to verifiability

• dedicated rexriting steps

Tailored validation pass

• preserve control flow graph isomorphism

• SMT based basic block equivalence checking

Thorough experiments of our prototype

• 100% validation of lifted chunks

• positive impact of TINA for 3 standard verification tools
(KLEE, Frama-C EVA, Frama-C WP)

22

Verification-oriented lifting

__asm__

(

"cmp %0, %1 \n\t"

"cmovg %1, %0 \n\t"

/* [...] */

: "+&r" (i), "+&r" (a)

: /* [...] */

: /* no clobbers */

);

__eax__ = (unsigned int)i;

__ebx__ = (unsigned int)a;

__res32__ = __ebx__ - __eax__;

__zf__ = __res32__ == 0u;

__sf__ = (int)__res32__ < 0;

__of__ = ((__ebx__ >> 31)

!= (__eax__ >> 31))

& ((__ebx__ >> 31)

!= (__res32__ >> 31));

if (!__zf__ & __sf__ == __of__)

goto l1;

else goto l2;

l1: __tmp__ = __ebx__; goto l3;

l2: __tmp__ = __eax__; goto l3;

l3: __eax__ = __tmp__;

i = (int)__eax__;

__asm__

(

"cmp %0, %1 \n\t"

"cmovg %1, %0 \n\t"

/* [...] */

: "+&r" (i), "+&r" (a)

: /* [...] */

: /* no clobbers */

);

original
__eax__ = (unsigned int)i;

__ebx__ = (unsigned int)a;

__res32__ = __ebx__ - __eax__;

__zf__ = __res32__ == 0u;

__sf__ = (int)__res32__ < 0;

__of__ = ((__ebx__ >> 31)

!= (__eax__ >> 31))

& ((__ebx__ >> 31)

!= (__res32__ >> 31));

if (!__zf__ & __sf__ == __of__)

goto l1;

else goto l2;

l1: __tmp__ = __ebx__; goto l3;

l2: __tmp__ = __eax__; goto l3;

l3: __eax__ = __tmp__;

i = (int)__eax__;

basic lifting
int __tmp__;

if (a > i)

__tmp__ = a;

else

__tmp__ = i;

i = __tmp__;

TINA lifting

T1. low-level data & computation

T2. low-level packing & representation

T3. unusual & unstructured control flow

• high-level predicate

• unpacking

• expression propagation

• loop normalization

23

Verifiability of lifted code

Analysis
KLEE Frama-C EVA Frama-C WP

symbolic execution abstract interpretation deductive verification

Criterion
Number of Number of Number of

explored paths in functions without fully discharged
10m timeout alarms proofs

Li
fti

ng

None 1 336k 0 / 58 0 / 12

Basic 1 459k 12 / 58 1 / 12

TINA 6 402k 19 / 58 12 / 12

24

Summary

A novel operational semantics for inline assembly
• an operational semantics between C & binary

• a method to automatically extract inline assembly semantics (TINA-core)

A method to check, patch and refine the interface
• comprehensive formalization of interface compliance

(Framing conditions & Unicity condition)

• thorough experiments with RUSTINA over 2.6k+ real-world chunks
(986 severe issues found, 803 patches, 7 package patch accepted)

• a study of current bad coding practices
(6 recurrent patterns yield 90% of issues, including 5 fragile patterns)

A trustworthy, verification-oriented lifting method
• first verification friendly lifting

• tailored post-lifting validation pass

• experiments with TINA over KLEE and Frama-C

[ICSE 2021]

[ASE 2019]

25

Thank you
for your attention

25

Summary

A novel operational semantics for inline assembly
• an operational semantics between C & binary

• a method to automatically extract inline assembly semantics (TINA-core)

A method to check, patch and refine the interface
• comprehensive formalization of interface compliance

(Framing conditions & Unicity condition)

• thorough experiments with RUSTINA over 2.6k+ real-world chunks
(986 severe issues found, 803 patches, 7 package patch accepted)

• a study of current bad coding practices
(6 recurrent patterns yield 90% of issues, including 5 fragile patterns)

A trustworthy, verification-oriented lifting method
• first verification friendly lifting

• tailored post-lifting validation pass

• experiments with TINA over KLEE and Frama-C

[ICSE 2021]

[ASE 2019]

26

