
A Semantic Foundation for Gradual Set-theoretic Types

GPL Award Accessit

Victor Lanvin

June 7th, 2022

1 / 13



Gradual Typing

– Goal: have both static and dynamic typing in the same language.

– How: by adding a dynamic type, denoted “?”.

– Allows for a trade-off between safety and programming productivity.

The transition is gradual:

? ≼ ? → ? ≼ Int → ? ≼ Int → Bool

2 / 13



Gradual Typing

– Goal: have both static and dynamic typing in the same language.

– How: by adding a dynamic type, denoted “?”.

– Allows for a trade-off between safety and programming productivity.

The transition is gradual:

? ≼ ? → ? ≼ Int → ? ≼ Int → Bool

2 / 13



Gradual Typing

– Goal: have both static and dynamic typing in the same language.

– How: by adding a dynamic type, denoted “?”.

– Allows for a trade-off between safety and programming productivity.

The transition is gradual:

? ≼ ? → ? ≼ Int → ? ≼ Int → Bool

2 / 13



Set-Theoretic Types

– Types with connectives (∨, ∧, ¬).

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

(x = e∈ Int)? true: x : Bool ∨ ¬ Int

– Powerful but often syntactically heavy.

– In Semantic subtyping:

Types ≃ Sets of values
Subtyping ≃ Set-containment

3 / 13



Set-Theoretic Types

– Types with connectives (∨, ∧, ¬).

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

(x = e∈ Int)? true: x : Bool ∨ ¬ Int

– Powerful but often syntactically heavy.

– In Semantic subtyping:

Types ≃ Sets of values
Subtyping ≃ Set-containment

3 / 13



Set-Theoretic Types

– Types with connectives (∨, ∧, ¬).

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

(x = e∈ Int)? true: x : Bool ∨ ¬ Int

– Powerful but often syntactically heavy.

– In Semantic subtyping:

Types ≃ Sets of values
Subtyping ≃ Set-containment

3 / 13



Set-Theoretic Types

– Types with connectives (∨, ∧, ¬).

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

(x = e∈ Int)? true: x : Bool ∨ ¬ Int

– Powerful but often syntactically heavy.

– In Semantic subtyping:

Types ≃ Sets of values
Subtyping ≃ Set-containment

3 / 13



Set-Theoretic Types

– Types with connectives (∨, ∧, ¬).

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

(x = e∈ Int)? true: x : Bool ∨ ¬ Int

– Powerful but often syntactically heavy.

– In Semantic subtyping:

Types ≃ Sets of values
Subtyping ≃ Set-containment

3 / 13



Set-Theoretic Types

– Types with connectives (∨, ∧, ¬).

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

(x = e∈ Int)? true: x : Bool ∨ ¬ Int

– Powerful but often syntactically heavy.

– In Semantic subtyping:

Types ≃ Sets of values
Subtyping ≃ Set-containment

3 / 13



Motivating Example (1/2)

Let’s write a map, that can work on both arrays and lists depending on a condition:

let map (condition : Bool) (f : α -> β) (data : ) : =

if condition then
List.map f data

else
Array.map f data

Runtime checks or casts are then inserted automatically by the compiler.

This is however very unsafe, as it accepts a string for example.

4 / 13



Motivating Example (1/2)

Let’s write a map, that can work on both arrays and lists depending on a condition:

let map (condition : Bool) (f : α -> β) (data : ) : =
if condition then

List.map f data
else

Array.map f data

Runtime checks or casts are then inserted automatically by the compiler.

This is however very unsafe, as it accepts a string for example.

4 / 13



Motivating Example (1/2)

Let’s write a map, that can work on both arrays and lists depending on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : =
if condition then

List.map f data
else

Array.map f data

Runtime checks or casts are then inserted automatically by the compiler.

This is however very unsafe, as it accepts a string for example.

4 / 13



Motivating Example (1/2)

Let’s write a map, that can work on both arrays and lists depending on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data

Runtime checks or casts are then inserted automatically by the compiler.

This is however very unsafe, as it accepts a string for example.

4 / 13



Motivating Example (1/2)

Let’s write a map, that can work on both arrays and lists depending on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data

Runtime checks or casts are then inserted automatically by the compiler.

This is however very unsafe, as it accepts a string for example.

4 / 13



Motivating Example (1/2)

Let’s write a map, that can work on both arrays and lists depending on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data ⟨α list⟩
else

Array.map f data

Runtime checks or casts are then inserted automatically by the compiler.

This is however very unsafe, as it accepts a string for example.

4 / 13



Motivating Example (1/2)

Let’s write a map, that can work on both arrays and lists depending on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data ⟨α list⟩
else

Array.map f data ⟨α array⟩

Runtime checks or casts are then inserted automatically by the compiler.

This is however very unsafe, as it accepts a string for example.

4 / 13



Motivating Example (1/2)

Let’s write a map, that can work on both arrays and lists depending on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data ⟨α list⟩
else

Array.map f data ⟨α array⟩

Runtime checks or casts are then inserted automatically by the compiler.

This is however very unsafe, as it accepts a string for example.

4 / 13



Motivating Example (2/2)

let map condition f
(data : (α list ∨ α array) ) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays.

– No need for manual type checks.

– We want to infer all non-gradual types (including the return type).

5 / 13



Motivating Example (2/2)

let map condition f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays.

– No need for manual type checks.

– We want to infer all non-gradual types (including the return type).

5 / 13



Motivating Example (2/2)

let map condition f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays.

– No need for manual type checks.

– We want to infer all non-gradual types (including the return type).

5 / 13



Motivating Example (2/2)

let map condition f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays.

– No need for manual type checks.

– We want to infer all non-gradual types (including the return type).

5 / 13



Motivating Example (2/2)

let map condition f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays.

– No need for manual type checks.

– We want to infer all non-gradual types (including the return type).

5 / 13



Motivating Example (2/2)

let map (condition : Bool) f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays.

– No need for manual type checks.

– We want to infer all non-gradual types (including the return type).

5 / 13



Motivating Example (2/2)

let map condition (f : α -> β)
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays.

– No need for manual type checks.

– We want to infer all non-gradual types (including the return type).

5 / 13



Motivating Example (2/2)

let map condition f
(data : (α list ∨ α array) ∧ ?) : β list ∨ β array =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays.

– No need for manual type checks.

– We want to infer all non-gradual types (including the return type).

5 / 13



How it is Usually Done

1. Define a subtype-consistency relation ≤̃ .

This relation is not transitive! ? ≤̃ τ ≤̃ ? for all τ

2. Embed this relation into typing rules.

Γ ⊢ e1 : τ1 → τ ′1 Γ ⊢ e2 : τ2 τ2 ≤̃ τ1
Γ ⊢ e1 e2 : τ ′1

This gets even more complicated with set-theoretic types!

6 / 13



How it is Usually Done

1. Define a subtype-consistency relation ≤̃ .

This relation is not transitive! ? ≤̃ τ ≤̃ ? for all τ

2. Embed this relation into typing rules.

Γ ⊢ e1 : τ1 → τ ′1 Γ ⊢ e2 : τ2 τ2 ≤̃ τ1
Γ ⊢ e1 e2 : τ ′1

This gets even more complicated with set-theoretic types!

6 / 13



How it is Usually Done

1. Define a subtype-consistency relation ≤̃ .

This relation is not transitive! ? ≤̃ τ ≤̃ ? for all τ

2. Embed this relation into typing rules.

Γ ⊢ e1 : τ1 → τ ′1 Γ ⊢ e2 : τ2 τ2 ≤̃ τ1
Γ ⊢ e1 e2 : τ ′1

This gets even more complicated with set-theoretic types!

6 / 13



How it is Usually Done

1. Define a subtype-consistency relation ≤̃ .

This relation is not transitive! ? ≤̃ τ ≤̃ ? for all τ

2. Embed this relation into typing rules.

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 τ2 ≤̃ dom(τ1)
Γ ⊢ e1 e2 : τ1◦τ2

This gets even more complicated with set-theoretic types!

6 / 13



Our (First) Approach

1. Translate gradual types to static types (types without ?) with variables.

2. Define transitive relations on gradual types, and in particular “precision” which
contains the essence of gradual typing.

3. Embed precision into more and more complex systems (Hindley-Milner, with
subtyping, and with semantic subtyping).

Important remark: this translation is only used to define and compute relations,
and is not done in the source program.

7 / 13



Our (First) Approach

1. Translate gradual types to static types (types without ?) with variables.

2. Define transitive relations on gradual types, and in particular “precision” which
contains the essence of gradual typing.

3. Embed precision into more and more complex systems (Hindley-Milner, with
subtyping, and with semantic subtyping).

Important remark: this translation is only used to define and compute relations,
and is not done in the source program.

7 / 13



Our (First) Approach

1. Translate gradual types to static types (types without ?) with variables.

2. Define transitive relations on gradual types, and in particular “precision” which
contains the essence of gradual typing.

3. Embed precision into more and more complex systems (Hindley-Milner, with
subtyping, and with semantic subtyping).

Important remark: this translation is only used to define and compute relations,
and is not done in the source program.

7 / 13



Our (First) Approach

1. Translate gradual types to static types (types without ?) with variables.

2. Define transitive relations on gradual types, and in particular “precision” which
contains the essence of gradual typing.

3. Embed precision into more and more complex systems (Hindley-Milner, with
subtyping, and with semantic subtyping).

Important remark: this translation is only used to define and compute relations,
and is not done in the source program.

7 / 13



Subtyping

Subtyping only allows us to move inside the dynamic world, or inside the static world.
It does not allow crossing the barrier.

As opposed to consistent subtyping, it is transitive:

? ≤ ? ? ≰ Int Int ≰ ?

It can be used to handle unions and intersections, by simply plugging-in the static
version of semantic subtyping:

? ≤ ? ∨ Int Int ∧ ? ≤ ?

8 / 13



Subtyping

Subtyping only allows us to move inside the dynamic world, or inside the static world.
It does not allow crossing the barrier.

As opposed to consistent subtyping, it is transitive:

? ≤ ? ? ≰ Int Int ≰ ?

It can be used to handle unions and intersections, by simply plugging-in the static
version of semantic subtyping:

? ≤ ? ∨ Int Int ∧ ? ≤ ?

8 / 13



Subtyping

Subtyping only allows us to move inside the dynamic world, or inside the static world.
It does not allow crossing the barrier.

As opposed to consistent subtyping, it is transitive:

? ≤ ? ? ≰ Int Int ≰ ?

It can be used to handle unions and intersections, by simply plugging-in the static
version of semantic subtyping:

? ≤ ? ∨ Int Int ∧ ? ≤ ?

8 / 13



Precision

Precision is what allows us to cross the barrier from the dynamic world into the
static world (and only this way).

? ≼ τ for every τ

? → ? ≼ τ1 → τ2 for every τ1, τ2

And it is transitive:

? ≼ ? → ? ≼ ? → Int ≼ Int → Int

Therefore it can be embedded into a type system as a subsumption-like rule:
materialization.

9 / 13



Precision

Precision is what allows us to cross the barrier from the dynamic world into the
static world (and only this way).

? ≼ τ for every τ

? → ? ≼ τ1 → τ2 for every τ1, τ2

And it is transitive:

? ≼ ? → ? ≼ ? → Int ≼ Int → Int

Therefore it can be embedded into a type system as a subsumption-like rule:
materialization.

9 / 13



Precision

Precision is what allows us to cross the barrier from the dynamic world into the
static world (and only this way).

? ≼ τ for every τ

? → ? ≼ τ1 → τ2 for every τ1, τ2

And it is transitive:

? ≼ ? → ? ≼ ? → Int ≼ Int → Int

Therefore it can be embedded into a type system as a subsumption-like rule:
materialization.

9 / 13



Precision

Precision is what allows us to cross the barrier from the dynamic world into the
static world (and only this way).

? ≼ τ for every τ

? → ? ≼ τ1 → τ2 for every τ1, τ2

And it is transitive:

? ≼ ? → ? ≼ ? → Int ≼ Int → Int

Therefore it can be embedded into a type system as a subsumption-like rule:
materialization.

9 / 13



Declarative Type Systems

Γ, x : τ ⊢ x : τ

Γ, x : τ1 ⊢ e : τ2
Γ ⊢ λx .e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

And as a bonus, we get the static gradual guarantee for free!

10 / 13



Declarative Type Systems

Γ, x : τ ⊢ x : τ

Γ, x : τ1 ⊢ e : τ2
Γ ⊢ λx .e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

Γ ⊢ e : τ1 τ1 ≼ τ2
Γ ⊢ e : τ2

Γ ⊢ e : τ1 τ1 ≤ τ2
Γ ⊢ e : τ2

And as a bonus, we get the static gradual guarantee for free!

10 / 13



Declarative Type Systems

Γ, x : ∀α⃗.τ ⊢ x : τ{α⃗ := t⃗}
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx .e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

Γ ⊢ e1 : τ1 Γ, x : GenΓ(τ1) ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ

And as a bonus, we get the static gradual guarantee for free!

10 / 13



Declarative Type Systems

Γ, x : ∀α⃗.τ ⊢ x : τ{α⃗ := t⃗}
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx .e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

Γ ⊢ e1 : τ1 Γ, x : GenΓ(τ1) ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ

Γ ⊢ e : τ1 τ1 ≼ τ2
Γ ⊢ e : τ2

And as a bonus, we get the static gradual guarantee for free!

10 / 13



Declarative Type Systems

Γ, x : ∀α⃗.τ ⊢ x : τ{α⃗ := t⃗}
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx .e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

Γ ⊢ e1 : τ1 Γ, x : GenΓ(τ1) ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ

Γ ⊢ e : τ1 τ1 ≼ τ2
Γ ⊢ e : τ2

Γ ⊢ e : τ1 τ1 ≤ τ2
Γ ⊢ e : τ2

And as a bonus, we get the static gradual guarantee for free!

10 / 13



Declarative Type Systems

Γ, x : ∀α⃗.τ ⊢ x : τ{α⃗ := t⃗}
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx .e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1
Γ ⊢ e1 e2 : τ2

Γ ⊢ e1 : τ1 Γ, x : GenΓ(τ1) ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ

Γ ⊢ e : τ1 τ1 ≼ τ2
Γ ⊢ e : τ2

Γ ⊢ e : τ1 τ1 ≤ τ2
Γ ⊢ e : τ2

And as a bonus, we get the static gradual guarantee for free!

10 / 13



Extremal Materializations

Theorem
For every type τ ∈ GTypes, there exists t1, t2 ∈ STypes such that:

τ ≼ t1 and τ ≼ t2

∀τ ′ ∈ GTypes. τ ≼ τ ′ =⇒ t1 ≤ τ ′ ≤ t2

We write t1 = τ⇓ and t2 = τ⇑.

(? → ?)⇑ = 0 → 1 (? → ?)⇓ = 1 → 0

These types are computed in linear time!

11 / 13



Extremal Materializations

Theorem
For every type τ ∈ GTypes, there exists t1, t2 ∈ STypes such that:

τ ≼ t1 and τ ≼ t2

∀τ ′ ∈ GTypes. τ ≼ τ ′ =⇒ t1 ≤ τ ′ ≤ t2

We write t1 = τ⇓ and t2 = τ⇑.

(? → ?)⇑ = 0 → 1 (? → ?)⇓ = 1 → 0

These types are computed in linear time!

11 / 13



Extremal Materializations

Theorem
For every type τ ∈ GTypes, there exists t1, t2 ∈ STypes such that:

τ ≼ t1 and τ ≼ t2

∀τ ′ ∈ GTypes. τ ≼ τ ′ =⇒ t1 ≤ τ ′ ≤ t2

We write t1 = τ⇓ and t2 = τ⇑.

(? → ?)⇑ = 0 → 1 (? → ?)⇓ = 1 → 0

These types are computed in linear time!

11 / 13



Extremal Materializations

Theorem
For every type τ ∈ GTypes, there exists t1, t2 ∈ STypes such that:

τ ≼ t1 and τ ≼ t2

∀τ ′ ∈ GTypes. τ ≼ τ ′ =⇒ t1 ≤ τ ′ ≤ t2

We write t1 = τ⇓ and t2 = τ⇑.

(? → ?)⇑ = 0 → 1 (? → ?)⇓ = 1 → 0

These types are computed in linear time!

11 / 13



An Equivalent Representation of Gradual Types

We show the following:

τ1 ≤ τ2 ⇐⇒

τ1
⇓ ≤ τ2

⇓

τ1
⇑ ≤ τ2

⇑

τ1 ≼ τ2 ⇐⇒

τ1
⇓ ≤ τ2

⇓

τ2
⇑ ≤ τ1

⇑

Moreover, we have that for every gradual type τ ,

τ ≃ τ⇓ ∨ (? ∧ τ⇑)

We can use this representation to lift operators to gradual types!

dom(τ) =
def dom(τ⇑) ∨ (? ∧ dom(τ⇓))

12 / 13



An Equivalent Representation of Gradual Types

We show the following:

τ1 ≤ τ2 ⇐⇒

τ1
⇓ ≤ τ2

⇓

τ1
⇑ ≤ τ2

⇑
τ1 ≼ τ2 ⇐⇒

τ1
⇓ ≤ τ2

⇓

τ2
⇑ ≤ τ1

⇑

Moreover, we have that for every gradual type τ ,

τ ≃ τ⇓ ∨ (? ∧ τ⇑)

We can use this representation to lift operators to gradual types!

dom(τ) =
def dom(τ⇑) ∨ (? ∧ dom(τ⇓))

12 / 13



An Equivalent Representation of Gradual Types

We show the following:

τ1 ≤ τ2 ⇐⇒

τ1
⇓ ≤ τ2

⇓

τ1
⇑ ≤ τ2

⇑
τ1 ≼ τ2 ⇐⇒

τ1
⇓ ≤ τ2

⇓

τ2
⇑ ≤ τ1

⇑

Moreover, we have that for every gradual type τ ,

τ ≃ τ⇓ ∨ (? ∧ τ⇑)

We can use this representation to lift operators to gradual types!

dom(τ) =
def dom(τ⇑) ∨ (? ∧ dom(τ⇓))

12 / 13



An Equivalent Representation of Gradual Types

We show the following:

τ1 ≤ τ2 ⇐⇒

τ1
⇓ ≤ τ2

⇓

τ1
⇑ ≤ τ2

⇑
τ1 ≼ τ2 ⇐⇒

τ1
⇓ ≤ τ2

⇓

τ2
⇑ ≤ τ1

⇑

Moreover, we have that for every gradual type τ ,

τ ≃ τ⇓ ∨ (? ∧ τ⇑)

We can use this representation to lift operators to gradual types!

dom(τ) =
def dom(τ⇑) ∨ (? ∧ dom(τ⇓))

12 / 13



Conclusion

Your favorite typing rules + Materialization + Subsumption = Your gradual
type system

We present:

1. A simple method of declaratively adding gradual typing to any existing type
system.

2. A set-theoretic interpretation of gradual types that has considerable
consequences.

3. The algorithmic systems for our GTLC with set-theoretic types.

4. Denotational semantics for several calculi, including CDuce, and a GTLC
without set-theoretic types.

13 / 13



Conclusion

Your favorite typing rules + Materialization + Subsumption = Your gradual
type system

We present:

1. A simple method of declaratively adding gradual typing to any existing type
system.

2. A set-theoretic interpretation of gradual types that has considerable
consequences.

3. The algorithmic systems for our GTLC with set-theoretic types.

4. Denotational semantics for several calculi, including CDuce, and a GTLC
without set-theoretic types.

13 / 13



Conclusion

Your favorite typing rules + Materialization + Subsumption = Your gradual
type system

We present:

1. A simple method of declaratively adding gradual typing to any existing type
system.

2. A set-theoretic interpretation of gradual types that has considerable
consequences.

3. The algorithmic systems for our GTLC with set-theoretic types.

4. Denotational semantics for several calculi, including CDuce, and a GTLC
without set-theoretic types.

13 / 13



Conclusion

Your favorite typing rules + Materialization + Subsumption = Your gradual
type system

We present:

1. A simple method of declaratively adding gradual typing to any existing type
system.

2. A set-theoretic interpretation of gradual types that has considerable
consequences.

3. The algorithmic systems for our GTLC with set-theoretic types.

4. Denotational semantics for several calculi, including CDuce, and a GTLC
without set-theoretic types.

13 / 13



Conclusion

Your favorite typing rules + Materialization + Subsumption = Your gradual
type system

We present:

1. A simple method of declaratively adding gradual typing to any existing type
system.

2. A set-theoretic interpretation of gradual types that has considerable
consequences.

3. The algorithmic systems for our GTLC with set-theoretic types.

4. Denotational semantics for several calculi, including CDuce, and a GTLC
without set-theoretic types.

13 / 13



Future work

– Fully unify our logical approach and our denotational semantics.

– Sound and complete type inference for gradual set-theoretic types.

– Add more features to our calculus, such as intersection types for functions.

– A denotational semantics for a cast calculus with set-theoretic types.

14 / 13



Future work

– Fully unify our logical approach and our denotational semantics.

– Sound and complete type inference for gradual set-theoretic types.

– Add more features to our calculus, such as intersection types for functions.

– A denotational semantics for a cast calculus with set-theoretic types.

14 / 13



Future work

– Fully unify our logical approach and our denotational semantics.

– Sound and complete type inference for gradual set-theoretic types.

– Add more features to our calculus, such as intersection types for functions.

– A denotational semantics for a cast calculus with set-theoretic types.

14 / 13



Future work

– Fully unify our logical approach and our denotational semantics.

– Sound and complete type inference for gradual set-theoretic types.

– Add more features to our calculus, such as intersection types for functions.

– A denotational semantics for a cast calculus with set-theoretic types.

14 / 13


