Deep Software Variability and
Frictionless Reproducibility

Mathieu Acher @acherm

institut

“DIverSE e universté INSA (T e O IRISA

Crzia i, e @ de France

Deep Software Variability and Frictionless Reproducibility

Abstract: The ability to recreate computational results with minimal effort and actionable metrics provides a solid
foundation for scientific research and software development. When people can replicate an analysis at the touch of a
button using open-source software, open data, and methods to assess and compare proposals, it significantly eases
verification of results, engagement with a diverse range of contributors, and progress. However, we have yet to fully
achieve this; there are still many sociotechnical frictions.

Inspired by David Donoho's vision, this talk aims to revisit the three crucial pillars of frictionless reproducibility (data
sharing, code sharing, and competitive challenges) with the perspective of deep software variability.

Our observation is that multiple layers — hardware, operating systems, third-party libraries, software versions, input
data, compile-time options, and parameters — are subject to variability that exacerbates frictions but is also essential
for achieving robust, generalizable results and fostering innovation. | will first review the literature, providing evidence
of how the complex variability interactions across these layers affect qualitative and quantitative software properties,
thereby complicating the reproduction and replication of scientific studies in various fields.

| will then present some software engineering and Al techniques that can support the strategic exploration of variability
spaces. These include the use of abstractions and models (e.g., feature models), sampling strategies (e.g., uniform,
random), cost-effective measurements (e.g., incremental build of software configurations), and dimensionality reduction
methods (e.g., transfer learning, feature selection, software debloating).

| will finally argue that deep variability is both the problem and solution of frictionless reproducibility, calling the software
science community to develop new methods and tools to manage variability and foster reproducibility in software
systems.

Exposé invité, 5 juin 2024 @ GDRGPL

Special thanks to™ Aaron Randrianaina,
Jean-Marc Jézéquel, Benoit Combemale, Luc
Lesoil, Arnaud Gotlieb, Helge Spieker, Quentin
Mazouni, Paul Temple, Gauthier Le Bartz Lyan,
Xhevahire Ternava, Olivier Barais, and the
whole DiverSE and RIPOST teams

*random order, incomplete

AGENDA

Frictionless Reproducibility and (Deep) Software (Variability)
Problem: Variability and Frictions
Solution: Variability and Exploration

Discussions

SOETWARE VARIANTS
ARE EATING THE WORLD

< & vikipedia.org < T

WIKIPEDIA o Bs

e e oot Open Broadcaster Software

5027 000+ ariies + 683 000+ Arkel
B&E - Pycckuit
7y—EMER xS\ Coovoanas snumnoneans
994 000+ EF i 1273 000+
Espaiiol 3 Francais
La enciclopedia libre L'encyclopédie libre
218 000+ aricios N 1703000+ aricles
Italiano Portugués
Lenciciopedia oera Aenciclopécia re
+240 000+ voe = 95 000+ arigos
% Polski
aEnENSE Woina encykiopedia
850 000+ 448 11470004 haset
engish o o a

Find a language:

@v anN>D0oID
A

O @A aowven

zoom L

Stockfish

TlhirmAd Al ed

Science is changing:
Computation-based research

CMIPS
CMIP6

Latitude
o

Computational science
depends on software and its engineering

executions of large simulations

problem solving

executable paper

from a set of scripts to automate the deployment to... a
comprehensive system containing several features that
help researchers exploring various hypotheses ‘

Computational science
depends on software and its engineering

multi-million line of code base
multi-dependencies

multi-systems N '.f,m

in Kernel Vi on 8.3.0 J4:04 PDT 2005; roo

multi-layer B
multi-version ==z

multi-person
multi-variant

In [6]: sess.run(tf.svd(tf_matrix))

Out[6]: (array([9.99998987e-01, 1.48747023e-03, 4.88133628e-086,
4.69811084e-06, 4. 37980998086, 3. 45290823206,
1.14686304e-06, 3. 1098079506, 2.975250912e-086,
2.65099743e-06, 1.91537106e-06, 0.00000000e+00,
0.00000000e+00, 0.00000000+00, 0.00000000&+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00], dtype=float32),

array([[1.00000000e+00, 9. 82503479e—05 -2 52892733& 08,

¢ 6. 4375604%

Dealing with software collapse: software stops working eventually
Konrad Hinsen 2019 -1.24836730-00, 3.B3645737e-00, -3.003164d6e-09,

nan, -7.00323994e-07],

Configuration failures represent one of the most common types of et Lememeor <

software failures sayagh et al. TSE 2018

“Insanity is doing the same thing over and over again
and expecting different results”

http://throwgrammarfromthetrain.blogspot.com/2010/10/definition-of-insanity.html

Reproducihbility

“Authors provide all the necessary data and the computer

codes to run the analysis again, re-creating the results.”
(Claerbout/Donoho/Peng definition)

“The actual scholarship is the complete software development environment and the
complete set of instructions which generated the figures.” (~executable paper)

10

Reproducibility and Replicability

Reproducible: Authors provide all the necessary data and the computer
codes to run the analysis again, re-creating the results.

Replication: A study that arrives at the same scientific findings as another
study, collecting new data (possibly with different methods) and

completing new analyses. “terminologies for Reproducible
Research”, Lorena A. Barba, 2018

"

Reproducihbility and Replicability

Reproducible: Authors provide all the necessary data and the computer codes to run the

analysis again, re-creating the results.

Replication: A study that arrives at the same scientific findings as another study, collecting new

data (possibly with different methods) and completing new analyses.

“Terminologies for Reproducible
Research”, Lorena A. Barba, 2018

The Claerbout/Donoho/Peng terminology is broadly disseminated across disciplines (see Table
2). But the recent adoption of an opposing terminology by two large professional groups—ACM
and FASEB—make standardization awkward. The ACM publicizes its rationale for adoption as
based on the International Vocabulary of Metrology, but a close reading of the sources makes
this justification tenuous. The source of the FASEB adoption is unclear, but there’s a chance that
Casadevall and Fang (2010) had an influence there. They, in turn, based their definitions on the
emphatic but essentially flawed work of Drummond (2009).

Table 2: Grouping of terminologies, as in Table 1, but by discipline. %4
Fs
A Bl B2
political science signal processing microbiology, immunology (FASEB)
economics scientific computing computer science (ACM)
econometry
epidemiology —=
clinical studies o - ’ - - -
internal medicine *As a result of discussions with the National Information Standards Organization (NISO), it was recommended that ACM harmonize
physiology (neuro) Jlits terminology and definitions with those used in the broader scientific research community, and ACM agreed with NISO’s

computational biology recommendation to swap the terms “reproducibility” and “replication” with the existing definitions used by ACM as part of its artifac

biomedical research

review and badging initiative. ACM took action to update all prior badging to ensure consistency.

statistics

r

V

|4

Reproducibility and Replicability

Methods Reproducibility: A method is reproducible if reusing the original code leads to the same

results.
Results Reproducibility: A result is reproducible if a reimplementation of the method generates

statistically similar values.
Inferential Reproducibility: A finding or a conclusion is reproducible if one can draw it from a

different experimental setup.

“Unreproducible Research is Reproducible”, Bouthillier et al., ICML 2019

13

Reproducible science

“Authors provide all the necessary data and the computer codes to run the
analysis again, re-creating the results.”

Socio-technical issues: open science, open source software, multi-disciplinary
collaboration, incentives/rewards, initiatives, etc.

Reproducible science

“Authors provide all the necessary data and the computer codes to run the
analysis again, re-creating the results.”

Socio-technical issues: open science, open source software, multi-disciplinary
collaboration, incentives/rewards, initiatives, etc.

with many challenges related to data acquisition, knowledge organization/sharing, etc.

EMSE Open Science Initiative

Openness in science is key to fostering progress via transparency, reproducibility, and replicability. Especially open

data and open source are two fundamental pillars in open science as both build the core for excellence in evidence-
based research. The Empirical Software Engineering journal (EMSE) has therefore decided to explicitly foster open
science and reproducible research by encouraging and supporting authors to share their (anonymised and curated)
empirical data and source code in form of replication packages. The overall goals are:

« Increasing the transparency, reproducibility, and replicability of research endeavours. This supports the

immediate credibility of authors' work, and it also provides a common basis for joint community efforts grounded
on shared data.

Bulldmg up an overall body of knowledge in the community leading to widely accepted and well-formed software
neerlngltieoue in th Iong run.

github.com/emsejournal/openscience

<3, </> Software Heritage

@ GitLab [t

Reproducible Science is good. Replicated Science is better.

ReScience C is a platinum open-access peer-reviewed journal that targets computational research and
encourages the explicit replication of already published research, promoting new and open-source
implementations in order to ensure that the original research is reproducible. You can read about the
ideas behind ReScience C in the article Sustainable computational science: the ReScience initiative

https://rescience.qgithub.io/ OpenReview.net

https:/lreproducible-research.inria.fr/

ba Reproducible

-i ¢* Builds

https://github.com/emsejournal/openscience
https://rescience.github.io/
https://reproducible-research.inria.fr/

Reproducible science

“Authors provide all the necessary data and the computer codes to run the
analysis again, re-creating the results.”

Socio-technical issues: open science, open source software, multi-disciplinary
collaboration, incentives/rewards, initiatives, etc.
with many challenges related to data acquisition, knowledge organization/sharing, etc.

CALL FOR CHALLENGE CASES

Home / Call for Papers / Call for challenge cases

ARTIFACT EVALUATION

Authors of qccepted research papers are invited to submit the artifacts associatec idea of the challenge track is to provide participants with a set of case studies that tackle relevar
lems and challenge the state of the art. The challenge track happens in two phases. In the first p

ICPE 202

13th ACM/SPEC International Conference on

aper for evaluation. To do so, they should submit a PDF via Easychair (select the R i i
p p 4 3 Y (\ > will be a call for cases. Submitted cases will be reviewed by the challenge co-chairs to ensure t Performance Engmeermg
Artifacts tI’CICk). The PDF should contain a stable URL (OI’ DOl) to the artifacts. The UR 2 }. i ired information is clearlv described. Accented cases will be part of the official conference proce¢

contain the steps or general instructions to execute/analyze the artifact. Each artifc ! Z 2 2 p R
BEEks Jandly ot In this track, an industrial performance dataset will be provided. The

submitt participants are invited to come up with research questions about the

According to ACM's "Result and Artifact Review and Badging” policy, an "artifact” is “a digital asoe dataset, and study those. The challenge is open-ended: participants can

object that was either created by the authors to be used as part of the study or generated b darngt
: : . . A part yorg) 4 choose the research questions that they find most interesting. The proposed
the experiment itself [... which can include] software systems, scripts used to run experiments,

input datasets, raw data collected in the experiment, or scripts used to analyze results.” approache§ and/or FOOIS and their findings are discussed in short papers, and 16
presented in the main conference.

submission will be reviewed by at least two reviewers.

Lamb and Zacchiroli “Reproducible Builds: Increasing the Integrity
of Software Supply Chains” IEEE Software 2022

https://arxiv.org/pdf/2104.06020
(best paper award IEEE Software for year 2022)

“The build process of a software product is reproducible if,
after designating a specific version of its source code and all
of its build dependencies, every build produces bit-for-bit
identical artifacts, no matter the environment in which the
build is performed.”

¢*a_ Reproducible
¢’ Builds

Reproducible builds are a set of software development practices that create an

independently-verifiable path from source to binary code. (more)

https://arxiv.org/pdf/2104.06020

Erictionless reproducihility

Statistics > Other Statistics

(Suppitecion 2 Ocl 2080 _ _ https://arxiv.org/abs/2310.00865
Data Science at the Singularity
David Donoho https://hdsr.mitpress.mit.edu/pub/g9maud4mO/release/2

“Computation-driven research really has changed in the last 10 years, driven by three principles of
data science, which, after longstanding partial efforts, are finally available in mature form for daily
practice, as frictionless open services offering data sharing, code sharing, and competitive
challenges.”

[FR-1: Data] + [FR-2: Re-execution] + [FR-3: Challenges]

“We are entering an era of frictionless research exchange, in which research algorithmically builds
on the digital artifacts created by earlier research, and any good ideas that are found get spread
rapidly, everywhere. The collective behavior induced by frictionless research exchange is the

emergent superpower driving many events that are so striking today.”
18

https://arxiv.org/abs/2310.00865
https://hdsr.mitpress.mit.edu/pub/g9mau4m0/release/2

Erictionless reproducihility

[FR-1: Data] “Datafication of everything, with a culture of research data sharing.”

[FR-2: Re-execution (code)]: “Research code sharing including the ability to exactly
re-execute the same complete workflow by different researchers.”

[FR-3: Challenges] “a shared public dataset, a prescribed and quantified task
performance metric, a set of enrolled competitors seeking to outperform each other on

the task, and a public leaderboard.”
“!o
.i\\/‘

: %
z Lh
| 3 J%
performance \\-:«:f’y
metric "?’\\

Leaderboard

19

Erictionless reproducihility

[FR-1: Data] “Datafication of everything, with a culture of research data sharing.”

[FR-2: Re-execution (code)]: “Research code sharing including the ability to exactly re-execute the same complete
workflow by different researchers.”

[FR-3: Challenges] “a shared public dataset, a prescribed and quantified task performance metric, a set of enrolled
competitors seeking to outperform each other on the task, and a public leaderboard.”

frictionless reproducibility = [FR-1] + [FR-2] + [FR-3]

performance
& metric

If we only have... We are blocked, because Example
[FR-1] 4+ [FR-2] No defined task Exploratory Data Analysis
. . Netflix Challenge;
[FR-1] + [FR-3] | Can’t build on code of others DARPA Biometric Challenges
[FR-2] + [FR-3] No Common Dataset Human Subjects Clinical Research

Table 1: Leave-One-outs, and what is blocked 20

Erictionless reproducihility

frictionless reproducibility = [FR-1: Data] + [FR-2: Re-execution] + [FR-3: Challenges]

[FR-1] and [FR-2] are quite “standard” but do not come without frictions — more soon! [FR-3] is an important and
original piece

On the one hand, [FR-3] is a way to objectively assess a contribution, compare solutions, and measure
progress (if any). [FR-3] sounds legit to provide a “task definition that formalized a specific research
problem and made it an object of study”. [FR-3] is “the competitive element that attracted our attention in
the first place”.

Think about the absence of [FR-3]. The “challenge paradigm” is a big ongoing shift (see Isabelle Guyon
and Evelyne Viegas - "Al Competitions and the Science Behind Contests")

e Many success stories (mainly in empirical machine learning): speech processing, biometric
recognition, facial recognition, protein structure prediction problem (CASP), etc.

e More and more leaderboard (eg https://evalplus.qgithub.io/leaderboard.html
https://robustbench.qgithub.io/) or competition (eg SAT competition)

e Many platforms, services, and events supporting the shift (eg Kaggle)

21

https://evalplus.github.io/leaderboard.html
https://robustbench.github.io/

Erictionless reproducihility

frictionless reproducibility = [FR-1: Data] + [FR-2: Re-execution] + [FR-3: Challenges]
[FR-1] and [FR-2] are quite “standard” but do not come without frictions — more soon! [FR-3] is an important and original piece

On the one hand, [FR-3] is a way to objectively assess a contribution, compare solutions, and measure progress (if any).
[FR-3] sounds legit to provide a “task definition that formalized a specific research problem and made it an object of
study”. [FR-3] is “the competitive element that attracted our attention in the first place”. The performance measurement
crystallized a specific project’s contribution, boiling down an entire research contribution essentially to a single number,
which can be reproduced. Think about the absence of [FR-3]

The “challenge paradigm” is a big ongoing shift (see Isabelle Guyon and Evelyne Viegas - "Al Competitions and the
Science Behind Contests")

e Many success stories (mainly in empirical machine learning): speech processing, biometric recognition, facial
recognition, protein structure prediction problem (CASP), etc.

e More and more leaderboard (eg https://evalplus.github.io/leaderboard.html https://robustbench.github.io/) or
competition (eg SAT competition)

e Many platforms, services, and events supporting the shift (eg Kaggle)

22

https://evalplus.github.io/leaderboard.html
https://robustbench.github.io/

Erictionless reproducihility

frictionless reproducibility = [FR-1: Data] + [FR-2: Re-execution] + [FR-3: Challenges]
[FR-1] and [FR-2] are quite “standard” but do not come without frictions — more soon! [FR-3] is an important but discussable piece
On the other hand, we know that the power of a simple scoring function is dangerous (e.g., Goodhart's law)

“What if the metric is wrong? What if the subtleties of a complex problem are not amenable to representation by a single
scalar? What happens when metrics for locally optimal solutions are apparent, but ones for globally optimal solutions are
not? What happens when the community is not (yet) mature enough to rally around a consensus-scoring function? | think
it is important to recognize that finding an appropriate scoring function, let alone an objectively best one, is an ongoing
task and might evolve as FR-1 and FR-2 provide a deeper understanding of the problem space.”

Overcoming Potential Obstacles as We Strive for Frictionless Reproducibility by Adam D. Schuyler (2024)

> performance

metric -

Are we frictionless?

Reading a paper in 2024 is sometimes like in 1970:

e Where is the source code? (eg implementation of the solution, scripts to
compute metrics)
e Where is the data? (eg to test the solution)

e Contacting authors?
O noresponse?

o code not consistent with the PDF
O

e |t does not work on my machine; results are completely different...

There are lots of socio-technical frictions... even when you have the code and data!

=> When people can replicate an analysis at the touch of a button using open-source software, open
data, and methods to assess and compare proposals, it significantly eases verification of results,
engagement with a diverse range of contributors, and progress

Frictionless reproducibility (an example)

Cutting through buggy adversarial example defenses:

fixing 1 line of code breaks SABRE

Nicholas Carlini
Google DeepMind

Abstract

SABRE is a defense to adversarial examples that was accepted at IEEE S&P 2024. We first reveal

significant flaws in the evaluation that point to clear signs of gradient masking. We then show the cause
of this gradient masking: a bug in the original evaluation code. By fixing a single line of code in the
original repository, we reduce SABRE’s robust accuracy to 0%. In response to this, the authors modify
the defense and introduce a new defense component not described in the original paper. But this fix
contains a second bug; modifying one more line of code reduces robust accuracy to below baseline levels.
After we released the first version of our paper online, the authors introduced another change to the
defense; by commenting out one line of code during attack we reduce the robust accuracy to 0% again.

diff --gi® a/core/defenses/sabre.py b/core/defenses/sabre.py

2| index fe509e6..bf13629 100644

--- a/core/defenses/sabre.py
+++ b/core/defenses/sabre.py

5| @@ -165,7 +165,7 @@ class SabreWrapper (nn.Module):

model = Sabre(eps=eps, wave=wave, use_rand=use_rand, n_variants=n_variants)
self.core = model
self.base_model = base_model

+

self.transform
@property
def lambda_r (self):

- self.transform = BPDAWrapper (lambda x, lambda_r: model.transform(x, lambda_r).float())
= (lambda x, lambda_r: model.transform(x, lambda_r).float())

Submission history

From: Nicholas Carlini [view email]
[vl] Mon, 6 May 2024 17:48:24 UTC (19 KB)
[v2] Mon, 27 May 2024 17:41:06 UTC (20 KB)

Reproducible science... with frictions

“Authors provide all the necessary data and the computer codes to run the
analysis again, re-creating the results.”

Despite the availability of data and code, several studies report that the
same data analyzed with different software can lead to different results.

from a set of scripts to automate the deploynéﬂ to...a
comprehensive system containing several features that
help researchers exploring various hypotheses 26

Replicability of the EC-Earth3 Earth system

(b) Different (c) Five-member 20-year lculation of (e) Statistical testing ®
rd in

(e) Cal Conclusion on
eeeeeeeeeeeeeeeee ble simulations standard indices of of differences in replicability

model under a change in computing
environment Dosr e C/\ -7 /X

R L : ,

Francois Massonnet{®"2, Martin Ménégoz(%>, Mario Acosta(®?, Xavier Yepes-Arbos R
3 2 B 2,4 Computing S
Eleftheria Exarchou{®“, and Francisco). Doblas-Reyes(»~* . enionment B %

Can a coupled ESM simulation be restarted from a different machine without causing
climate-changing modifications in the results? Using two versions of EC-Earth: one “non-replicable”
case (see below) and one replicable case.

(a) Model code

t2m difference b fi b peri mo06e and e011. Black dotted regions indicate where the difference
is rding to a K g nov test (39% of grid points show a significant difference)

DEEP VARIABILITY

SYSTEM

ODEREE V‘l) /{‘1 j o‘:‘f)

90'S 70°'S 50°S 30°S 10°S 10°N 30°'N 50°N 70°N 90°N
1 1 L

OPTION DISTRIB./
i =) YT e Bus
[sorrware | (A)flomes) R -
0 20°E 40°E 60°E 80'E 120°E 160°E 200°E 240°E 280°E 320°E : \/ R i 2

D) (@)

LeneTH REs.

-5234 -4.188 3141 -2.094 -1.047 0 1.047 2094 3141 41838 5234

Replicability of the EC-Earth3 Earth system

Model cod (b) Different (<) Five-member 20-year (e) Calculation of (e) Statistical testing (f) Conclusion on
. o (a) Model code environments mble simulatior standard indices of of differences in replicability
(constant forcing) performance performance
modael unaer a cnange in computin
nvironment

environment Oov = 7

Francois Massonnet{®'2, Martin Ménégoz(2%>, Mario Acosta(®?, Xavier Yepes-Arbos(?,
. : Computing
Eleftheria Exarchou:‘{.z, and Francisco J. Doblas-Rey(-:Sr.‘,f-',z'4 environment B

S o[pl =2/

Can a coupled ESM simulation be restarted from a different machine without causing
climate-changing modifications in the results? Using two versions of EC-Earth: one “non-replicable”
case (see below) and one replicable case.

t2m difference b five peri mo06e and e011. Black dotted regions indicate where the difference
s rding to a K nov test (39% of grid points show a significant difference)

30°'N 50°'N 70°'N 90'N

90'S 70°'S 50°S 30°'S 10'S

0 20°E 40E 60°E 80'E 120°E 160°E 200°E 240°E 280°E 320°E

-1.047 0 1.047

Replicability of the EC-Earth3 Earth system
model under a change in computing

environment

Francois Massonnet(®'2, Martin Ménégoz(®»>3, Mario Acosta(®?, Xavier Yepes-Arbos@?,

Eleftheria Exarchou(®?, and Francisco J. Doblas-Reyes(®%*

(b) Different (<) Five-member 20-year
environments. ensemble simulations
(constant forcing)

(a) Model code

Computing
environment A

/ ‘
\D-%

Computing
environment B

@errv -

(e) Calculation of
standard indices of
performance

(e) Statistical testing

of differences in
performance

(f) Conclusion on
replicability

Can a coupled ESM simulation be restarted from a different machine without causing climate-changing modifications in the results? Using
two versions of EC-Earth: one “non-replicable” case (see below) and one replicable case.

Table 1. The two computing environments considered in this study.

Computing environment ECMWF-CCA MareNostrum3

Location Reading, UK Barcelona, Spain
Motherboard Cray XC30 system IBM dx360 M4
Processor Dual 12-core E5-2697 v2 2x Intel SandyBridge-EP

(Ivy Bridge) series
processors (2.7 GHz), 24
cores per node

ES5-2670/1600 20M 8-core

at 2.6 GHz, 16 cores
per node

Operating system

Cray Linux Environment
(CLE)5.2

Linux — SuSe distribution
11 SP2

Compiler

Intel(R) 64 Compiler XE
for applications running
on Intel(R) 64, version

14.0.1.106 build 20131008

Intel(R) 64 Compiler XE
for applications running
on Intel(R) 64, version

13.0.1.117 build 20121010

MPI version

Cray mpich2 v6.2.0

Intel MPI v4.1.3.049

LAPACK version

Cray libsci v12.2.0

Intel MKL v11.0.1

SZIP, HDFS5, NetCDF4

v2.1,v1.8.11, v4.3.0

v2.1,v1.8.14, v4.2

GribAPI, GribEX

v1.13.0, v000395

v1.14.0, v000370

Table 2. The four experiments considered in this study.

Experiment ID e0l11 mO06e a0gi a0go

Computing environment ECMWF-CCA MareNostrum3 ~ECMWF-CCA MareNostrum3

EC-Earth version 3.1 3.1 32 32

Processors (IFS+NEMO+OASIS) 598 512 432 (288 +144) 416 (288 +128)
(480+96+22) (384+96+22) (OASIS: library) (OASIS:library)

F flags -02 -g -02-g -02-g -02 -fp-model
-traceback -traceback -traceback -r8 precise -xHost

-vec-report0 -r8
-vec-report0 -r8

-vec-report0 -r8
-vec-report0 -r8

-fp-model strict
-fp-model strict

-g -traceback
-g -traceback

-xHost -8
C flags -02-g -02-g -02-g -02 -fp-model
-traceback -traceback -traceback precise -xHost
-fp model -g -traceback
strict -xHost
LD flags -02-g -02-g -02-g -02 -fp-model
-traceback -traceback -traceback precise -xHost
-fp-model strict -g -traceback
-xHost
Output size 141.8GB 141.6GB 101.3GB 101.3GB

90'S 70S 50S 30S 105 10N 30N SON 70N SON

Replicability of the EC-Earth3 Earth system
model under a change in computing
environment .

2

(a) Model code

Francois Massonnet{®"2, Martin Ménégoz(%>, Mario Acosta(®?, Xavier Yepes-Arbos

Eleftheria Exarchou(®? and Francisco J. Doblas-Reyes(%*

Can a coupled ESM simulation be restarted from a different machine
without causing climate-changing modifications in the results?

A study involving eight institutions and seven different supercomputers in Europe is
currently ongoing with EC-Earth. This ongoing study aims to do the following:

e evaluate different computational environments that are used in collaboration
to produce CMIP6 experiments (can we safely create large ensembles DEEP VARIABILITY
composed of subsets that emanate from different partners of the ; ' :
consortium?);

e detect if the same CMIP6 configuration is replicable among platforms of the

EC-Earth consortium (that is, can we safely exchange restarts with EC-Earth o;mfme @j
YSTEM
partners in order to initialize simulations and to avoid long spin-ups?); and L

SOFTWARE

2)(O) (@)

Size LeneTH REs.

e systematically evaluate the impact of different compilation flag options (that e (%@\
is, what is the highest acceptable level of optimization that will not break the /_Sﬂpff_ b’
replicability of EC-Earth for a given environment?).

Should software version numbers determine science?

> PLoS One. 2012;7(6):e38234. doi: 10.1371/journal.pone.0038234. Epub 2012 Jun 1. Significant differences were revealed between
FreeSurfer version v5.0.0 and the two earlier versions.
[...] About a factor two smaller differences were detected
between Macintosh and Hewlett-Packard workstations

The effects of FreeSurfer version, workstation type,
and Macintosh operating system version on

anatomical volume and cortical thickness and between 0SX 10.5 and OSX 10.6. The observed
measurements differences are similar in magnitude as effect sizes

Ed H B M Gronenschild 1, Petra Habets, Heidi | L Jacobs, Ron Mengelers, Nico Rozendaal, Jim van Os, _repo.rted m M evaluatlons and neurOdegeneratlve_
Machteld Marcelis Studles.

see also Krefting, D., Scheel, M., Freing, A., Specovius, S., Paul, F., and
Brandt, A. (2011). “Reliability of quantitative neuroimage analysis using
freesurfer in distributed environments,” in MICCAI Workshop on

High-Performance and Distributed Computing for Medical Imaging.
(Toronto ON)

“Neuroimaging pipelines are known to generate different results
depending on the computing platform where they are compiled and

executed.”
Reproducibility of neuroimaging
analyses across operating systems,

Glatard et al., Front. Neuroinform., 24
April 2015

Applications

Interpreters

glibc version
0os
Hardware

Cluster A

Freesurfer 5.3.0, build 1
FSL 5.0.6, build 1
CIVET 1.1.12-UCSF, build 1

Python 2.4.3, bash 3.2.25,

Perl 5.8.8, tcsh 6.14.00
25

Cent0S 5.10

x86_64 CPUs (Intel Xeon)

Cluster B

Freesurfer 5.3.0, build 1 and 2
FSL 5.0.6, build 1 and 2
CIVET 1.1.12-UCSF, build 1
Python 2.7.5, bash 4.2.47,
Perl 5.18.2, tcsh 6.18.01
2.18

Fedora 20

x86_64 CPUs (Intel Xeon)

The implementation of mathematical functions manipulating single-precision floating-point
numbers in libmath has evolved during the last years, leading to numerical differences in
computational results. While these differences have little or no impact on simple analysis
pipelines such as brain extraction and cortical tissue classification, their accumulation
creates important differences in longer pipelines such as the subcortical tissue
classification, RSfMRI analysis, and cortical thickness extraction.

“Neuroimaging pipelines are known to generate different results
depending on the computing platform where they are compiled and

executed.”
Reproducibility of neuroimaging

analyses across operating systems,
Glatard et al., Front. Neuroinform., 24

April 2015

Application
(binary code)

Compilation (build)

Statically building programs improves reproducibility across OSes, but small
differences may still remain when dynamic libraries are loaded by static
executables]...]. When static builds are not an option, software heterogeneity might
be addressed using virtual machines. However, such solutions are only
workarounds: differences may still arise between static executables built on
different OSes, or between dynamic executables executed in different VMs.

Library calls

Dynamic libraries

System calls

OS kernel

Application
I (source code)

| Static libraries |

Instructions | | —
Hardware
Cluster A Cluster B
Applications Freesurfer 5.3.0, build 1 Freesurfer 5.3.0, build 1 and 2
FSL 5.0.6, build 1 FSL 5.0.6, build 1 and 2

CIVET 1.1.12-UCSF, build 1 CIVET 1.1.12-UCSF, build 1
Interpreters Python 2.4.3, bash 3.2.25, Python 2.7.5, bash 4.2.47,
Perl 5.8.8, tcsh 6.14.00 Perl 5.18.2, tcsh 6.18.01

glibcversion 2.5 2.18
0s CentOS 5.10 Fedora 20

Hardware x86_64 CPUs (Intel Xeon) x86_64 CPUs (Intel Xeon)

Reproducible science as a

(deep) software variability problem

“Authors provide all the necessary data and the computer codes to run the
analysis again, re-creating the results.”

Despite the availability of data and code, several studies report that the
same data analyzed with different software can lead to different results.

Climate is changing

from a set of scripts to automate the deploynéﬂ to...a
comprehensive system containing several features that

help researchers exploring various hypotheses 34

deep software variability, Despite the availability of data and
3‘5;;/’}- : ') ’ i
= }%@"‘ code, several studies report that the
software S e same data analyzed with different

software can lead to different results

buﬂd Val’:labl|lty 24
'\> g ‘?‘/A "ég
compller variability
\ 7 &
contalner varlablllty i
hyperwsor varlablllty

Q_

/ .
i Ve : (i, 4
S S R/
A0 4R g 2

operatlng system varlablllt

Many layers (operating system,
third-party libraries, versions, workloads,
compile-time options and flags, etc.)
themselves subject to variability can

% alter the results.

Reproducible science and deep
software variability: a threat and
opportunity for scientific knowledge!

.‘ \ § ,' -_ ..:-}- ;_'
-

hardware varlablllt
i < ' ; @ 35

LY TR '\; - P AP
“'d _,;«)a,:..-

nAT

port torch, struct
f binary_douotelnum):
print(*".jotn(f'{c:6>8b)" for ¢ tn struct.pack('ta", nun)))
' 1/10)

nary_doubL forch. tensor(3, device-"cud

How often (X+y)+z == X+ y+ Z) ?

© stas Bekman & @stasgekman - Jan 20

results which proved to be triggered by whether from pretrained was caliod

Tegend
Atarmatie Growp

-~ Mondatoy Featre
OptonaiFeature

Python excludes Compiler flags

Algebraic Relation

‘ RelationWithPi ‘ ‘ Inve:se] Associativity ‘

Figure 2: Feature model (excerpt). Inverse (resp. Relation-
WithPi) corresponds to checking the property (x*z)/(y*z) =
x/y (vesp. (x xz*xm)/(y*z*m) = x/y) with z,y # 0

Parameters,

eg., random seed selection
Input Dam perl seed None ASSOCIATVITY 100 10 1000 1000 00
eg., x+t(y+z) vs. (xt+y)+

Language - <> Java

python = oo o p— P w |mo ma e

o seed None multinversepi | 100 0 a0

SeassyssazendEss 534

)
Compiler & VM = JVM

= w P e | 0 P W v P

= —
Lib Jblas SPETSC ® seed None Mo 100 10 620 720 2764054952217051 666
Platform ' ' " etz wuTiwe 1o B 30 smo oo 50
M OS Julla seed None strictequalty assocuTvy 100 10 7a0 s00 acooraaseicasss s2s
Pracessor P RISCV ARM e pe—— pe=r—r o | [o0 e
e pe——— S | w |5 [|os
P o ena s pprcs syt | oy |10 [| wma | 00
Mi o e PP PR ey P e

Inner state of

architecture

https://qgithub.com/FAMILIAR-project/reproducibility-associativity/

https://github.com/FAMILIAR-project/reproducibility-associativity/

AGENDA

Frictionless Reproducibility and (Deep) Software (Variability)
Problem (cont’d): Variability and Frictions
Solution: Variability and Exploration

Discussions

9
DNaaa 0

=

8 ARM

o CMake
GC C Cross-platform Make

el

Open Broadcaster Software’

execution energy

time

consumption

security ‘accuracy

deep software variability
hardware variability

15,000+ options

thousands of compiler
flags and compile-time

3ptlons
ozens of

preferences

100+ command-line

parameters
1000+ feature toggles

Non-functional properties

deep software variability

hardware variability
& =ammarm K

Naas §
’”@‘ CMake 1
15,000+ options SySt em un d er

o Variability
"€ thousands .of c?mpiler.ﬂags StUdV OUtpUt
and compile-time options (reproducible (scientific result:
=~ dozens of preferences and mMost 9f the time
€| inputdat replicable) [EIVMAM

100+ command-line parameters

performance

< metric
#y

1000+ feature toggles i

39

DEEP VARIABILITY

o
BTITH
CORES

AAAAAAAS

/ OPERATING | ‘& »
SYSTEM VERSION
@

i { > Bue
[SOFTWARE % E) —
- CompiL
7

P

|
{ T " n ﬁg, O'
OE lﬁ\g PUT LJ‘ ATA %\) f)
| i
— - e = Size LENGTH

Replicability of the EC-Earth3 Earth system
model under a change in computing

environment

Francois Massonnet(®'2, Martin Ménégoz

23 Mario Acosta.

Eleftheria Exarchou(®?, and Francisco J. Doblas-Reyes(®%*

two versions of EC-Earth: one “non-replicable” case (see below) and one replicable case.

Table 1. The two computing environments considered in this study.

2, Xavier Yepes-Arbos:

2

(a) Model code

Table 2. The four experiments considered in this study.

Computing environment

ECMWF-CCA

MareNostrum3

Location

Reading, UK

Barcelona, Spain

Motherboard

Cray XC30 system

1BM dx360 M4

Processor

Dual 12-core E5-2697 v2
(Ivy Bridge) serics
processors (2.7 GHz), 24
cores per node

2x Tntel SandyBridge-EP
ES5-2670/1600 20M 8-core
at 2.6 GHz, 16 cores

per node

Operating system

Cray Linux Environment
(CLE)5.2

Linux — SuSe distribution
11 8P2

Compiler

Intel(R) 64 Compiler XE
for applications running
on Intel(R) 64, version
14.0.1.106 build 20131008

Intel(R) 64 Compiler XE
for applications running
on Intel(R) 64, version
13.0.1.117 build 20121010

MPI version

Cray mpich2 v6.2.0

TIntel MPI v4.1.3.049

LAPACK version

Cray libsci v12.2.0

Intel MKL vI1.0.1

SZIP, HDFS, NetCDF4

v2.1, v1.8.11, v4.3.0

V2.1, v1.8.14, v4.2

GribAPI, GribEX

v1.13.0, v000395

v1.14.0, v000370

o) (&)
SYSTEM Vet
~—

(b) Different
environments.

Computing
environment A

y

— ,

Computing
environment B

Can a coupled ESM simulation be restarted from a different machine without causing climate-changing modifications in the results? Using

(<) Five-member 20-year
ensemble simulations
(constant forcing)

Experiment ID e0l1 m06e a0gi a0go
Computing environment ECMWF-CCA MareNostrum3 ~ ECMWF-CCA MareNostrum3
EC-Earth version 3.1 3.1 32 32
Processors (IFS+NEMO+OASIS) 598 512 432(288+144) 416 (288 +128)
(480+96+22) (384+96+422) (OASIS: library) (OASIS:library)
F flags -02-g -02-g -02-g -02 -fp-model
-traceback -traceback -traceback -r8 precise -xHost
-vec-report0 -r8 -vec-report0 -r8 ~fp-model strict -g -traceback
-vec-report0 -r8 -vec-report0 -r8 -fp-model strict -g -traceback
-xHost -8
C flags -02-g -02-g -02-g -02 -fp-model
-traceback -traceback -traceback precise -xHost
-fp model -g -traceback
strict -xHost
LD flags -02 -g -02-g -02-g -02 -fp-model
-traceback back -traceback precise -xHost
-fp-model strict -g -traceback
-xHost
Output size 141.8GB 141.6GB 101.3GB 101.3GB

OFTWARE\]
VARIANT /

9

B)

90°'S 70°'S 50'S 30S 10°S 10N 30N 50N 70°N 90N

() Calculation of
standard indices of
performance

(e) Statistical testing
of differences in
performance

-~ pN =2/

(f) Conclusion on
replicability

12m difference between five—r

ot (39% of grd pol

200E 240°E 280E 320'E

20°E 40°E 60°E 80°E 120'E 160°E

5234 -avs 8w 200 100] 107 20 3141 ams sz

B eptanstory Association of parameter, software, and hardware
variable Meanin - - - - =
’ variation with large-scale behavior across 57,000 climate
entcoef Entrainment coefficient mOdEIS
ct Accretion constant
o— e Christopher G. Knight, Sylvia H. E. Knight, Neil Massey, Tolu Aina, Carl Christensen, Dave J. F...
il PRt et My + See all authors and affiliations
vfl Ice fall speed through clouds
PNAS July 24, 2007 104 (30) 12259-12264; https://doi.org/10.1073/pnas.0608144104
eacf Empirically adjusted cloud fraction
. S We demonstrate that effects of parameter, hardware, and software variation are
" S R . detectable, complex, and interacting. However, we find most of the effects of
1ce emperature range o ice a edo variation . .
parameter variation are caused by a small subset of parameters. Notably, the

Wonspharicat e entrainment coefficient in clouds is associated with 30% of the variation seen in
Ridare Gl Unee climate sensitivity, although both low and high values can give high climate
Lce particle size sensitivity. We demonstrate that the effect of hardware and software is small relative
oo o et et ot to the effect of parameter variation and, over the wide range of systems tested, may

o it be treated as equivalent to that caused by changes in initial conditions.
processor_name classirtication
clock_classic :;Z;TZZ::QCIMK speed recorded under classic DE’EP VAR'AB'L'W
ram size Hardware RAM
clock_boinc_i Integer processor clock speed recorded under BOINC

middleware
clock boinc f Floating point processor clock speed recorded under OPER;ING

BOINC middleware SYSTEM
0S_name Operating system
dtheta Perturbations to initial conditions on a given level B

/ SOFTWARE

57,067 climate model runs. These runs sample parameter space for 10 parameters
with between two and four levels of each, covering 12,487 parameter combinations
(24% of possible combinations) and a range of initial conditions

Joelle Pineau “Building Reproducible, Reusable, and Robust Machine Learning Software” ICSE’19 keynote “[...] results
can be brittle to even minor perturbations in the domain or experimental procedure”

Deep Reinforcement Learning that Matters torch.manual seed(3407) is all you need: On the influence of

random seeds in deep learning architectures for computer

Peter Henderson'*, Riashat Islam'?*, Philip Bachman? e

J()elle Pineaul, DOina Precupl, DaVid Megerl J— David Picard DAVID.PICARD@ENPC.FR

. . LIGM, Ecole des Ponts, 77455 Marnes la vallée, France
What is the magnitude of the effect
hyperparameter settings can have on baseline N
perfo rmance? In this paper I investigate the effect of random seed selection on the accuracy \\jll(‘h using

popular deep learning architectures for computer vision. I'scan a large amount of seeds (up
to 10%) on CIFAR 10 and I also scan fewer seeds on Imagenet using pre-trained models to
investigate large scale datasets. The conclusions are that even if the variance is not very
large, it is surprisingly easy to find an outlier that performs much better or much worse

How does the choice of network architecture for than the average,
the policy and value function approximation affect
performance?

DEEP VARIABILITY

How can the reward scale affect results?

Can random seeds drastically alter performance? e, 'R A)
f SYSTEM , <

VERSION OPTION DisTRiB.

How do the environment properties affect - = 4t
variability in reported RL algorithm performance? { SOFTWAREJ y @ & j i

Are commonly used baseline implementations 7 ,
comparable? — Zy) L®) I ;@)

Reproducible and replicable CFD: it's harder than you think

Olivier Mesnard, Lorena A. Barba
Mechanical and Aerospace Engineering, George Washington University, Washington DC 20052

“Completing a full replication study of our previously published findings on bluff-body
aerodynamics was harder than we thought. Despite the fact that we have good
reproducible-research practices, sharing our code and data openly.”

Story 1: Meshing and boundary con-
ditions can ruin everything

DEEP VARIABILITY

Story 3: All linear algebra libraries are
not created equal [o

Story 4: Different versions of your [sorrware |
code, external libraries or even com-
pilers may challenge reproducibility

Variability in the analysis of a single neuroimaging
dataset by many teams

Rotem Botvinik-Nezer, Felix Holzmeister, ... Tom Schonberg®& 4+ Show authors

Nature 582, 84-88 (2020) | Cite this article
42k Accesses | 203 Citations | 2056 Altmetric | Metrics

Data analysis workflows in many scientific domains have become increasingly complex and fléxible (=
subject to variability). Here we assess the effect of this flexibility on the results of functional magnetic
resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9
ex-ante hypotheses. The flexibility of analytical approaches is exemplified by the fact that no two teams

chose identical workflows to analyse the data.

Notably, a meta-analytical approach that aggregated information across teams yielded a significant
consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an
overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the
dataset. Our findings show that Gfialyiicaliflexibility CaRiaveiSubStantial SfeciSIoRISCientificiConcIUSIons.
and identify factors that may be related to variability in the analysis of functional magnetic resonance
imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and
demonstrate the need for performing and reporting multiple analyses of the same data. Potential
approaches that could be used to mitigate issues related to analytical variability are discussed.

Can Machine Learning Pipelines Be Better
Configured? Wang et al. FSE’2023

DEEP VARIABILITY

e & @)
A - GPU
O;i::g:‘:)a ’ @\J OpTION) @\)

oo =) \ U U TR
SOFTWARE) -)

! SOFTWARE ’) (i [£3])
Il /- VERSION /

In this paper, we empirically studied 11,363 ML pipelines from
diverse competitions on KAGGLE to explore the impacts of differ-
ent ML library version combinations on their performances. Our
study reveals the pervasiveness and severity of PLC issues in ML
pipelines. Our findings can motivate the establishment of a symbi-
otic ecosystem where researchers, tool builders, and library vendors
work together to assist developers in combating PLC issues.

“A pipeline is subject to misconfiguration if

it exhibits significantly inconsistent performance upon changes in
the versions of its configured libraries or the combination of these
libraries. We refer to such performance inconsistency as a pipeline
configuration (PLC) issue.”

y
Versions

{2.7.1, 2.7.0} Crash Crash Crash Crash
{2.4.3,2.4.1} I 0.768 522 I 1895.656 1244.446
{2.4.3,2.3.1} I 0.737 521 | 1882.099 1241.001
{2.4.3, 2.2.0} I 0.559 523 | 1926.980 1248.518
{2.3.1,2.4.1} l Crash Crash : Crash Crash
{2.3.1,2.3.1} : Crash Crash | Crash Crash
{2.3.1, 2.2.0} I 0.997 | | 1877.330 1199.130
{2.3.1, 2.1.0} I 0.997 I | 1888.612 1202.602
{2.3.1, 2.0.0} I Crash Crash | Crash Crash
{2.3.1, 1.15.2} | 0.997 | | 1989.861 1194.425
{2.3.1, 1.14.0} | 0997 | | 1853423 1196.269
{2.3.1, 1.13.1} | 0997 I | 1901.693 1183.123

Deep software variability: Are layers/features
orthogonal or are there interactions?

Variability layers environment
Age & usage Hardware
Hardware Number of cores
Processor
Noeratina Kernel options
PEP9] Linux distribution g Software || Input data
Jrranses Dependencies
— Linux o614 °
x264 compilation
Software X264 variant |
x264 version
Video category ?X i f? f
Input data Video resolution
Video quality Encoding per formances

Luc Lesoil, Mathieu Acher, Arnaud Blouin, Jean-Marc Jézéquel:
Deep Software Variability: Towards Handling Cross-Layer Configuration.

VAMOS| cime)

Configuration is hard: numerous options, informal knowledge

1l --ref 3

mathieuacher localhost.localdomain ~

480

-—cabac

ullhelp | wec -1

Lossless:
X264 --qp © -o <output> <input>

Maximum PSNR at the cost of speed and visual quality:
X264 --preset placebo --tune psnr -o <output> <input>

Constant bitrate at 1000kbps with a 2 second-buffer:
X264 --vbv-bufsize 2000 --bitrate 1000 -o <output> <input>

Presets:

--profile <string> Force the limits of an H.264 profile
Overrides all settings.

- baseline, main, high, highlo, high422

-I, --keyint <integer or "infinite"> Maximum GOP size [250]
—=Eff Enable interlaced mode (top field first)
--bff Enable 1interlacec
--pulldown <string> Use soft pulldowr|
- nhone, 22, :

mn
COREes

&)

OPTION

Ratecontrol:

-B, --bitrate <integer> Set bitrate (kbit
--crf <float> Quality-based VBF
--vbv-maxrate <integer> Max local bitratg
--vbv-bufsize <integer> Set size of the \

-p, —-pass <integer> Enable multipass

- 1: First pg
- 2: Last pas

OPERATING

SYSTEM DisTRIB.

--preset <string> Use a preset to select encoding settings [m

Overridden by user settings.

- ultrafast,superfast,veryfast, faster,fast

- medium,slow,slower,veryslow,placebo

--tune <string>
or situation

Overridden by user settings.

Multiple tunings are separated by commas.
Only one psy tuning can be used at a time.

Tune the settings for a particular type of source

VERSION

LENGTH

REAL WORLD ExampLE (x264)

g Y (&)
: DELL LATITUDE ="l RASPBERRY PI
—_— 7400 ey 4 MODEL B
i ~
/ OPERAT'NGJ > 20,014 10.4
SYSTEM
= x264 @ @ X264 x264 @ @7 x264
/ SOFTW IN=1 --mbtree --no-mbtree --mbtree --no-mbtree
- # . =
INPUT DATA - . . - e
> animation vertical animation vertical animation vertical animation vertical
4 b R VR DR
DuraTION (S) 6 o) © 25 73 351 72 359
Size (MB) 33 28 2 34 55 28 21 34

REAL WORLD ExampLE (x264)
y (L N B)

; DELL LATITUDE RASPBERRY PI
e 7400

' = 4 MODEL B
1 7=
/ ot J Vet 2004 oM
=5 x264 @ @ x264 x264 @ @ x264
/ SOFTWARE --mbtree --no-mbtree --mbtree --no-mbtree

INPUT DATA T | | M =
animation vertical animation vertical animation vertical animation vertical

oL N VR W

DuraATION (S) 6 22 6 25 73 351 72 359

Size (MB) 33 N EEEEN

REAL WORLD ExampLE (x264)
y (L N B)

; DELL LATITUDE RASPBERRY PI
e 7400

' = 4 MODEL B
1 7=
/ ot J Vet 2004 oM
=5 x264 @ @ x264 x264 @ @ x264
/ SOFTWARE --mbtree --no-mbtree --mbtree --no-mbtree

INPUT DATA T | | M =
animation vertical animation vertical animation vertical animation vertical

oL N VR VA

DURATION (s) 6 22 25 73 351 359 | =16
Size (MB) 33 28 21 34 22 28 21 34

DEEP VARIABILITY @
he “best”/default software
variant might be a bad one.
Influential software options
and their interactions vary.

Performance prediction
models and variabilit

cr
BT
CORES /

/ OPERATING ‘&)
SYSTEM VERSION / OPTION

/ SOFTWARE

knowledge may not

DisTRIB. /

L

SOFT\X/AR%

\Y/N=1/N\}»
\4

VERSION /

PERF. /

L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel,
“Deep Software Variability: Towards
Handling Cross-Layer Configuration” in VaMoS 2021

]

/ INPUT DAaTA

LENGTH

Let’s go deep with input data!

Y
Intuition: video encoder behavior (and thus runtime configurations) hugely depends
on the input video (different compression ratio, encoding size/type etc%

Is the best software configuration still the best?

Are influential options always influential?

Does the configuration knowledge generalize? @) W ™

we
AGE # COrRes

O NG ©
two performance models f; and f> ? L_;gj vE‘&N) OPTlON > @
]
fi= BXfh+a , S T
- CompiL. VARIANT VERSION
YouTube User General Content dataset: 1397 videos — f g N
Measurements of 201 soft. configurations (with same hardware, INPUT DATA | ([
compiler, version, etc.): encoding time, bitrate, etc. <‘ SR (;) (G>> i o

LENGTH

g

Inputs =

configurations’ measurements over input_1

configurationID cabac ref mixed_ref me subme me_range trellis elapsedtime fps rank_elapsedtime
d. 0 1 0 dia 0 16 0 0:02:14 375.22 1
138 0 5 0 tesa 10 24 2 0:04:54 155.35 T
15 0 1 0 dia 0 16 0 0:02:22 384.22 3
16 0 1 0 dia 0 16 0 0:02:24 375.4 4
17 0 1 0 hex 0 16 0 0:02:19 385.92 2
21 0 1 0 dia 0 16 0 0:02:84 260.65 6
22 0 1 0 dia 0 16 0 0:02:61 303.2 5

configurations’ measurements over input_42

configurationiD cabac ref mixed_ref me subme me_range trellis elapsedtime fps rank_elapsedtime
d. 0 1 0 dia 0 16 0 04:37 375.22 3
138 0 5 0 tesa 10 24 2 07:56 155.35 T
15 0 1 0 dia 0 16 0 07:23 384.22 6
16 0 3 0 dia 0 16 0 04:33 375.4 2
17 0 1 0 hex 0 16 0 06:00 385.92 5
21 0 1 0 dia 0 16 0 05:48 260.65 4

22 0 1 0 dia 0 16 0 02:19 303.2 1

Inputs =

configurations’ measurements over input_1

configurationiD cabac ref mixed_ref me subme me_range trellis elapsedtime fps rank_elapsedtime
1 0 B 0 dia 0 16 0 0:02:14 375.22 1
2 = . = & i e L Generalization/transfer:
15 0 1 0 dia 0 16 0 0:02:22 384.22 3
16 0 1 0 dia 0 16 0 0:02:24 3754 4 .
. ,) , , 3 , , . what’s the relationship between
21 0 1 0 dia 0 16 0 0:02:84 260.65 6 ‘- pe rf_p red_ 1 a n d
22 0 1 0 dia 0 16 0 0:02:61 303.2 5 - pe rf p red 4 2 '?
. _ _

e with perf_pred i
a performance model
capable of predicting

configuration on input_i

configurations’ measurements over input_42 : _ ,
e linear relationship?

. performance of any
: o eg Pearson/Spearman

configurationiD cabac ref mixed_ref me subme me_range trellis elapsedtime fps rank_elapsedtime
1 [1 0 dia o 16 0 04:37 375.22 3 Ilnear Correlatlon
138 0 5 [tesa 10 24 2 07:56 155.35 7 L] ° I n fI u e ntl a I

15 0 . 0 da 0 16 0 0723 w8422 6 y. features/options:
16 0 1 0 dia 0 16 0 04:33 375.4 2 s a m e ?

17 [1 [hex [16 o 06:00 385.92 5
21 0 1 o dia 0 16 0 05:48 260.65 4

22 [1 [dia [16 0 02:19 303.2 5

Let’s go deep with input data! |

Intuition: video encoder behavior (and thus runtime configurations) hugely depends
on the input video (different compression ratio, encoding size/type etc%

Is the best software configuration still the best?

Are influential options always influential?

Does the configuration knowledge generalize?

‘‘
two performance models f and f ' - i - . - - — :
p 1 2 :
159 configuraiond cabac ref mived_ref me sume me._range welis elapsedtme fps rank_elapsedtime I
nnnnnnnnnnnnnnnnnnn ref mixed_ref me subme me_range trellis elapsedtime fps. rank_elapsedtime
] o] e
— .
—_— o 15 | configuraioniD cabac ref mixed_ref me subme me_range welis ~ elapsedtime fps rank_elapsedtime
o } P - .
.
|
-
v
.
==, ; . . , . } P
- H 22
ou lupbe uUser Genera ontent datase videos a ° : o o 0 o o wm

Measurements of 201 soft. configurations (with same hardware,
compiler, version, etc.): encoding time, bitrate, etc.

Do x264 software performances
stay consistent across inputs?

1397 videos x 201 software

® Encoding time: very strong correlations configurations

O low input sensitivity

® FPS: very strong correlations

O low input sensitivity

® CPU usage : moderate correlation, a few negative correlations

® Bitrate: medium-low correlation, many negative correlations
O High input sensitivity
® Encoding size: medium-low correlation, many negative correlations

?

two performance models f; and f> ﬁ = IB)(_fz + -

O High input sensitivity

Are there some configuration options
more sensitive to input videos? (bitrate)

8x8dct - - oSt — T ————————
analyse 4 = ——E -
ag-mode —* s fiis suciincana clilia)s]
badapt {== = oD - - wm
bpyramid 1 m - - P ——
hframac ' s ommm - -G0---amm = o
cabac { ' EEN § e ——— -
crgporised T - 0D OOy — —— =1 _—1
deblock - — Bl — - §
direct 1 i : ! B B
fastpskip : OID [OOm oo (- Imm
G btree 1 2 —_—,-
Do - e
merange ' - o - oo
mixedref - , , - \——El-—amm
opengop - - » ! $
gpmax - &
rclookahead PR E——
ref T s {8
scenecut i ! ! B B ——EE— — P
subme ' B - -G EEEmEE ©
trellis ' i oy — - — -G E
weightb 1 ' Chm————— Tt - - EEm
weightp {5 .
~1.00 -0.75 ~0.50 ~025 0.00 0.25 0.50 0.75 100

Linear Regression coefficients

Are there some configuration options
more sensitive to input videos? (bitrate)

8x8dct 1 EpEEEEmEEE B ™ = ™ =
analyse - E-oses @
ag-mode - b ————f— | INEINEENENNEED DNEEE B © §
badapt - ED+ - ENEENSENSEEINENNSNEEEE DEEE © BB
bpyramid - G nonmmanEen
bframec | - - INENEENDENINEINEEOEEE DEEEEEE @ @
cabac 1 & S e ~ IEESEEEEENINENEENEESEENEEEE §N BN DEND DEEE EEEEE B @ E ® ©
Crqpuiiset 5 ooEnmmEEEE ©BE B = =
deblock - «mm
direct - 5 nnEmmEEE
a . D 1 EEESE SEEE EEE § o8 oo] "2 8 B
L mbtree |) e Ee— SN EEES §ES SESE EE ©
2 aEE B |]
merange - L]
mixedref <mmm
opengop 1 x
gpmax - *
rclookahead - E- nonmmEEE @ =8 =
ref - - OSNINEEEEEE © @ @ B "]] 2 B]
scenecut - amEmEEE ® ®
subme - ! e ——————————————————————
trellis - 3 ooEmEEE ®
weightb - E-msmm @
weightp - 5 oommmEm © =m
00 02 04 06 08

Random Forest feature importances

Practical impacts for users, developers,
scientists, and self-adaptive systems

Threats to variability knowledge: predicting, tuning, or understanding configurable systems without being
aware of inputs can be inaccurate and... pointless

Opportunities: for some performance properties (P) and subject systems, some stability is observed and
performance remains consistent!

System Domain Commit Configs #C Inputs T #I
gce Compilation cchb4e07 80 .c programs 30
ImageMagick Image processing 5ee49d6 100 images 1000
lingeling SAT solver 7d5db72 100 SAT formulae 351
nodelJS JS runtime env. 78343bb 50 .Js scripts 1939
—popplcr PDF rendering 42dde68 16 .pdf files 1480
—SQLite DBMS 53fa025 50 databases 150 FEIOR
x264 Video encoding €9a5903 201 videos 1397 @)
X7 Data compression e7daddd 30 system files 48 o UAGE
System #M Performance(s) P Docker | Dataset 5
gce 2400 size, ctime, exec Link Link
ImageMagick | 100000 size, time Link Link @ l) ;i
lingeling 35100 #confl.,#reduc. Link Link)
nodeJS 96 950 #operations/s Link Link SYST—EM \ VERSION OPTl‘Oy DisTRIB.
_popplor 23680 size, time Link Link
[& SQLite 7500 15 query times ql-ql15 Link Link /‘\
x264 280797 cpu, fps, kbs, size, time Link Link 7 (Q 'ﬁ\
X7 1440 size, time Link Link LEOF;W,_;E

i i B2
CompIL. \ VARIANT VERSION
L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel “The Interaction between 7 _ —
Inputs and Configurations fed to Software Systems: an Empirical Study” <‘ INPUT DR @ @ G @
— Size LENGTH Rrs
4

https://arxiv.org/abs/2112.07279

D= = SR V/ANSAVAN Y[B GBS 0 metimes, variability is

consistent/stable and
knowledge transfer is
immediate.

cr
BT
CORES /

/ OPER’]AT.NG A
SYSTEM VERSION / OPTION / DisTRIB. /
) (R £
P Q igl
Q- SOFTWARE -
/ SOFTWARE @) A BE
CompIL. / VERSION

| s 8
Gorvonn) (&) (O) (@)

Size / LENGTH L/ - / E-m 5 Kz

DOES DEEP SOFTWARE VARIABILITY AFFECT PREVIOUS SCIENTIFIC,
SOFTWARE—BASED STUDIES? (A GRAPHICAL TEMPLATE)

o
-llll-
CORES /

-
féj’l "v.' » wHB IF WE RUN THE

VERSION / OPTION / DisTRIB. / EXPERIMENTS ON
DIFFERENT:

VN \>
" VERSION/COMMIT?
PARAMETERS?

OPERATING
SYSTEM

L

/ SOFTWARE SOFTWAR%

\Y/N=1/N\}»

L]

!

/ INPUT DATA

LENGTH

AGENDA

Frictionless Reproducibility and (Deep) Software (Variability)
Problem: Variability and Frictions
Solution: Variability and Exploration

Discussions

Deep variability problem (statement)

Fundamentally, we have a huge multi-dimensional variant space (eg 10°6000)
run (source_code) => result

run (hardware, operating_system, build_environment, input_data, source_code, ...) =>
results

Fixing variability once and for all, in all dimensions/layers, is the obvious solution...

But it is either impossible (eg the ages of processor can have an impact on execution
time)...

Or not desirable

® non-robust result
® generalization/transferability of the results/findings

e Kkill innovation o

Replicability is the holy grail!

Exploring various configurations:

e Make more robust scientific findings
e Define and assess the yvalidity enveloppe

e Enable exploration and optimization

e Innovation and new hypothesis, insights, knowledge

= We propose to embrace deep variability for the sake of
replicability

65

Our Vision

Embrace deep variability!

Explicit modeling of the variability points
and their relationships, such as:

1. Get insights into the variability “factors” and
their possible interactions

2. Capture and document configurations for
the sake of reproducibility

3. Explore diverse configurations to replicate,
and hence optimize, validate, increase the
robustness, or provide better resilience

Embracing Deep Variability For Reproducibility & Replicability

Mathieu Acher, Benoit Combemale, Georges Aaron Randrianaina, Jean-Marc Jézéquel
IRISA, Université de Rennes
Rennes, France

ABSTRACT

Reproducibility (a.k.., determinism in some cases) constitutes a
fundamental aspect in various fields of computer science, such
as floating-point computations in numerical analysis and simula-
tion, concurrency models in parallelism, reproducible builds for
third parties i ion and packaging, and containerization for
execution environments. These concepts, while pervasive across di-
verse concerns, often exhibit intricate inter-dependencies, making

In this paper we propose to characterize both intended and un-
intended variability of any software-intensive system in order to
support ducibility and replicability, and estimate its

robustness, uncertainty profile, and explore different hypotheses.

2 DEEP SOFTWARE VARIABILITY

Uncertainty in informatics comes from many different origins [16,
36), either ontological (i.e. inherent dictability, e.g., aleatory)
or epistemic (i.e., due to i ient knowled

it challenging to achieve a ding. In this
short and vision paper we delve into the application of software
engineering techni ifically variability to
systematically identify and explicit points of variability that may
give rise to reproducibility issues (e.g., language, libraries, compiler,
virtual machine, OS, environment variables, etc). The primary ob-
jectives are: i) gaining insights into the variability layers and their
possible interactions, if) capturing and documenting configurations
for the sake of reproducibility, and iii) exploring diverse configu-
rations to replicate, and hence validate and ensure the robustness
of results. By adopting these methodologies, we aim to address the

Ontological causes include noise in the input data of a program, its
memory layout, network delays, the internal state of the processor,
the ambient temperature and even the age of the processor.

Epistemic causes include misunderstanding of the user’s needs,
variable behavior of conceptually similar resolution methods, choice
of threshold parameters, unexpected behavior of APIs, variable
behavior among functionally similar libraries, or subtle differences
in the semantics of programming languages (e.g., —3%2 evaluates to
—1inJavabut to 1 in Python), or even inside the same programming
language (for instance x /0 is an undefined behavior in C).

d with reproducibility and repli in
modern software systems and environments, facilitating a more
ive and nuanced ive on these critical aspects.

;‘;m:- e, random seed selection
s . e.g.x+(y+2) vs. (x+y)+z

ACM REP 2024

= We aim to address the complexities associated
with reproducibility and replicability in modern
software systems and environments, facilitating a
more comprehensive and nuanced perspective on
these critical “factors”.

66

Solution #1: Variability model

Abstractions are definitely needed to...

(@)
(@)
(@)
(@)
(@)

(@)
(@)

reason about logical constraints and interactions
integrate domain knowledge

synthesize domain knowledge

automate and guide the exploration of variants
scope and prioritize experiments

translation to logics
reasoning with SAT/CP/SMT solvers

Language and formalism: feature model (widely applicable!) FAMili AR

QeuUN\|

Programming_Language

Python excludes Compiler flags

Eloating_point experiments

[sa Mwm\ MongoDs | \Prwm

m\m

=03 ‘ .‘{\7 ‘ [RelationWithPi 1 [Tn\l‘av:a}

tﬂ;nn\ [

Fig

Wi
x/1

‘wdumn\‘ mt— '

—0—\ EEEE =
N

— T

son || Usasenver | Seweﬁw\

| [moncitc|

Hipster
s — (i === = = 7;0/ o
: ; S
RS o ——uncily
= e o = Wi T /
Hlbermezndg Deve'oome P
e P S S Z
Compiler flags | Alg 1 HM‘:‘OM‘E\ {M,,mmumm[j m\[: oo mmm PosesaL

OAuth2 A =~ SocialLogin
Socillogin = (HTTPSession v JWT)

~OAuth2 A - Sociallogin

A = MicroserviceAppiication = SQL v MongoDB
A (ServerApp v

Monoithic) A (SQL v MongoDB)

MicroserviceAppication = SQL v MongoDB v Cassandra
Server =

= Protractor

r v
SpringWebSockets v Cluster
Cient = ~Gating A ~ Cucumber A ~BackEnd A ~ Authentication

uuuuu

Appication v Cient

Bt i
W\a\ HTTPSession | [oauth2 | [Usa | [ow |
o ——

Solution #1: Variability model

e Abstractions are definitely needed... :fg‘“tgkg

e Yes, but how to obtain a feature model? fliice rstens

modelllng ProductLines:‘ :

reverse engineering (out of command-line parameters, source code, Iogs,nfigurations, etc.)
learning (next slide!)

modeling+reverse engineering+learning (HDR)

o O O O

. l Floating_point experiments ‘ Python excludes Compiler flags
e ——
Eep— : [] E=
_ ~ 2N . -
= —O 25 O Pl
‘Emgmmmugmyuﬁgg‘ ‘ Compiler flags ‘Algﬂmu.&:hlm e — - _
[Rosoeindvcacre ieScrc| [Weoserssopscton] UsaSarve| [Sevrio] [Miosenvescae
AR R i e TN
HazelCast | | Encache | [Oracet12c | | H2 | | PostgresaLDev | | MarabBDev | [Mysal] [MysaL | | orace || ManaDs | [Postgresal
Python C Rust ‘ RelationWithPi ‘ Inverse ‘ Associativity ‘ /—"m

OAuth2 A = Sociallogin A = MicroserviceAppicaton = SQL v MongoDB
Socallogin = (HTTPSession v JWT) A (ServerApp v Monoithic) A (SQL v MongoDB)
UsaServer = Uza
Oracke = H2 v Oradet2c
~OAuth2 A ~ Sociallogin A ~ MicroserviceAppication = SQL v MongoDB v Cassandra
Server = ~ Protractor
MySQL = H2 v MySql
MicroserviceAppication v MicroserviceGateway = JWT v Uaa
Monoithic = JWT v HTTPSession v OAuth2

Figure
WithP

x/y (re

MariaDB = H2 v MariaDEDev
PostgreSQL = H2 v PostgreSQLDev
Server v Appication = BackEnd A Authenticaton
SpringWebSockets v ClusteredSession = Appication
Clent = ~ Gating A ~ Cucumber A ~BackEnd A ~ Authencation
Libsass = Appicaton v Clent

N
=)
L

w
a
L

Solution #2: sampling and learning

(regression, classification)

- 4

. 4
O.%O O.I75 1.60 1.‘25 1.1‘;0 1.‘75 2.60 2.25
Encoding size (bytes) '

Whole Training Performance

Population of Sample Measuremen
Configurations

w
=]
L

N
v
L

-
v

Configurations

o w

Prediction
Model

f : C — RT the function affecting to any configuration
¢ € Cits performance f(c) € RY,

s) ;
Variability Model / Configurations] = (RS?:EZZSTAEZ) b—) (RQ’:I:ESE:;;:EAB)
fi oo fm P1 P2 - Dk L2 2
& P PD tEe vaas| e (__Training set o (Cex JCsa)
Glola[=lo|==|wm -] - flstiefset I T
Validation set I'—: E
alale 0 34 113 + — RN :
lid
(RQ\;:ESIe::iI:: 44) ’b@— (RQZL:eSa:;;ngl 42) P
£ e s L i E
Q Decision —> Flowdirection (] Start/end v [Ev:/::ta::n] E[Pr:ﬂ‘ﬂ;:f" J
Performance J. Alves Pereira, H. Martin, M. Acher, J.-M. Jézéquel, G. Botterweck and A. Ventresque

Prediction “Learning Software Configuration Spaces: A Systematic Literature Review” JSS, 2021%°

configurationID cabac ref mixed_ref me subme me_range trellis elapsedtime fps rank_elapsedtime
1 0 1 0 dia 0 16 0 04:37 375.22 3
138 0 5 0 tesa 10 24 2 07:56 155.35 7
15 0 1 0 dia 0 16 0 07:23 384.22 6
16 0 1 0 dia 0 16 0 04:33 375.4 2
17 0 1 0 hex 0 16 0 06:00 385.92 5
21 0 1 0 dia 0 16 0 05:48 260.65 4
22 0 1 0 dia 0 16 0 02:19 303.2 1

put 1.x264

hardware variability
& clamar i

3 ®
& Awake 15 000+ options

"= thousands of compiler flags
and compile-time options

dozens of preferences

input data

100+ command-line parameters

1000+ feature toggles

71

deep software variability

System under Output

(binary)

Study
reproducible

“The build process of a software product is reproducible if,
after designating a specific version of its source code and all
of its build dependencies, every build produces bit-for-bit
identical artifacts, no matter the environment in which the
build is performed.”

Lamb and Zacchiroli “Reproducible Builds: Increasing the
Integrity of Software Supply Chains” IEEE Software 2022

deep software variability

dHaé

System under Output
StUdy (binary)

“The build process of a software product is reproducible if, after designating a
specific version of its source code and all of its build dependencies, every
build produces bit-for-bit identical artifacts, no matter the environment in
which the build is performed.” Lamb and Zacchiroli “Reproducible Builds:
Increasing the Integrity of Software Supply Chains” IEEE Software 2022

15,000+
compile-time options

make defconfig # configuration
make # build the kernel (binary) out of config
make # should be the same, right?

72

Options Matter: Documenting and Fixing Non-Reproducible Builds in Highly-Configurable
Systems Randrianaina, Khelladi, Zendra, Acher MSR’2024

also at FOSDEM 2024 https://fosdem.org/2024/schedule/event/fosdem-2024-2848-documenting-and-fixing-non-reproducible-builds-due-to-configuration-options/

* Reproducible builds

Table 2: Identified options and their category.

[1: Build and Reproducibility chec Option Category

B =R MODULE_SIG_SHAT Module Signing
e T MODULE_SIG_SHA224 | Module Signing
.<:nma"z—

' : E MODULE_SIG_SHA256 Module Signin,
figurations V i i Q» -7 E > £

MODULE_SIG_SHA384 Module Signing

DULE_SIG_SHA1 ST Bl"m"Yf --------- MODULE_SIG_SHA51 2 Module Slgnlng
— — =y
CONPIQ_EPOLL 18 not est | Fncods sppssesssasccscassesscnscaiacsns i MODULE_SIG Module Signing
o e =0 T SIG_SHA1 |[EPOLL| ZBUD REPRODUCIBLE) o
+3000 Lines . e i ; GCOV_PROFILE_FTRACE | Profiling
: | N O v : GCOV_PROFILE_ALL Profiling
i — : DEBUG_INFO_SPLIT Debug Info
: Y , DEBUG_INFO_REDUCED | Debug Info
: (o - .
: Dec ree Decision Rules]

3: Exploration > === A---cccmmaaaaaaa,

MODULE_SIG_SHA1 (—\ ' M :
'
. 1
Disable 3 p [
/ ' MODULE_SIG_SHAT b - MODULE_STG_SHAT=y
Applying change : a

CONFIG_EPOLL is not set
MODULE_SIG_SHA512 MODULE_SIG_SHA224

CONFIG_ZBUD=m
+3000 lines
MODULE_SIG_SHAS12 4
MODULE_SIG_SHA384
MODULE_SIG_SHA224

Configurations

MODULE_SIG_SHA384

Options Matter: Documenting and Fixing Non-Reproducible Builds in Highly-Configurable
Systems Randrianaina, Khelladi, Zendra, Acher MSR’2024

also at FOSDEM 2024 https://fosdem.org/2024/schedule/event/fosdem-2024-2848-documenting-and-fixing-non-reproducible-builds-due-to-configuration-options/

#1 take away message: look at every variability layer when you want a
bit-to-bit reproducibility; don’t ignore compile-time options!

DEEP VARIABILITY

(T =& “The build process of a software

bl e product is reproducible if, after

Cores

designating a specific version and

‘.‘ . gn N .
OPERATING o, f
@ @/ A) Dt_g) a specific variant of its source

code and all of its build

e @) . s dependencies, every build produces
@T@ C%L) S%i&“.i’:557 VN [l) . bit-for-bit identical artifacts, no
matter the environment in which the
y) build is performed.” Lamb and
o LENW : Zacchiroli “Reproducible Builds:
Increasing the Integrity of Software
Supply Chains” IEEE Software 2022

Options Matter: Documenting and Fixing Non-Reproducible Builds in Highly-Configurable
Systems Randrianaina, Khelladi, Zendra, Acher MSR’2024

also at FOSDEM 2024 https://fosdem.org/2024/schedule/event/fosdem-2024-2848-documenting-and-fixing-non-reproducible-builds-due-to-configuration-options/

#2 take away message: interactions across variability layers exist (eg
compile-time option with build path) and may hamper reproducibility

“The build process of a software
product is reproducible if, after

Busybox. To pinpoint the source of non-reproducible builds, the
typical workflow is to slightly vary the build environment. Chang-
ing the build path between two builds of the same configuration for
Busybox impacts 49.75% of the configurations, causing their build

@\) : designating a specific version and
to be non-reproducible (presented in Figure 2 under the name Busy- fee (S . gn . .
box (alter)). The decision tree identifies the option involved which is as peC |f| C varia nt of its source

DEBUG. In fact, this option includes some debug information in the @ \ . .

binary including the build path. Thus, interactions exist between / SHENE \/:Rﬁn code and all of its build

configuration options and build environment. This can be solved in g dependencies’ every build prod uces
two ways, either by disabling the option, or not changing the build S) \ OFTWARE ; . Ly . .

environment. There, a trade-off is to be made because the developer {_S_OT“\EE_-, Ve bit-for-bit identical artifacts, no

may need DEBUG and require the build to be reproducible. Building matter the environment in which the

in the same directory solved the issue and the configurations we i o Y
have picked for Busybox are reproducible at 100% as shown in Fig- @ build is performed. Lamb and
the DEBUG option as key to achieving 100% reproducibility, either by Zacchiroli ReprOdUCIble Builds:

ure 2. Overall, altering the build environment in Busybox identified
disabling it or maintaining a consistent build path. Increasing the Integ rlty of Software

O Supply Chains” IEEE Software 2022

BusyBox

DEEP VARIABILITY

ComPiL.

H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, “Transfer learning across variants
and versions: The case of linux kernel size” Transactions on Software Engineering (TSE), 2021

e Linux as a subject software system (not as an OS interacting with other layers)

e Targeted non-functional, quantitative property: binary size
o interest for maintainers/users of the Linux kernel (embedded systems, cloud, etc.)
o challenging to predict (cross-cutting options, interplay with compilers/build
systems, etc/.)

e Dataset: version 4.13.3 (september 2017), x86_64 arch,

measurements of 95K+ random configurations
o paranoiac about deep variability since 2017, Docker to control the build
environment and scale
o diversity of binary sizes: from 7Mb to 1.9Gb
o 6% MAPE errors: quite good, though costly... L&LRA’M:)

a4an (e ol

sic DA

ff:" ot Version | Release Date | LOC | Files | Examples | Seconds/config | Options | Features | Deleted features | New features | ACommits | Files changes

4.13 2017/09/03 16,616,534 | 60,530 92,562 not available 12,776 9,468 - - - -

4.15 2018/01/28 17,073,368 | 62,249 39,391 not available 12,998 9,425 342 299 31,052 934,628
4.20 2018/12/23 17,526,171 | 62,423 23,489 225 13,533 10,189 468 1,189 104,691 1,972,020
5.0 2019/03/03 17,679,372 | 63,076 19,952 247 13,673 10,293 494 1,319 118,778 2,170,935
54 2019/10/24 19,358,903 | 67,915 25,847 285 14,159 10,813 663 2,008 181,308 3,827,025
3.1 2020/05/31 19,358,903 | 67,915 20,159 258 14,586 11,338 715 2,585 225,804 4,393,117
58 2020/08/02 19,729,197 | 69,303 21,923 289 14,817 11,530 730 2,792 242,381 4,681,313

Table I: Dataset properties for each version. The number of deleted/new features, delta commits, files changes are w.r.t. 4.13.

4.13 version (sep 2017): 6%. What about evolution? can we reuse the 4.13 Linux prediction
model? No, accuracy quickly decreases: 4.15 (5 months after): 20%; 5.7 (3 years after): 35%

Error variation on different versions

—e— Reuse with 85k 4.13
—=— Reuse with 20k 4.13

Reuse with 15k 4.15
—¥— Reuse with 15k 4.20 Ace # CORES
—+— Reuse with 15k 5.0
—o— Reuse with 15k 5.4

—— Reuse with 15k 5.7 { OPERATING ’ : :
SYST—EM VERSION OPTION

20 4

VERSION

CompiL. VARIANT

SOF%;:N:RE (%\:)) @] /

L13 115 1.20 5.0 5.4 5.7 5.8

Linux Kernel Version

H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, “Transfer learning across variants
and versions: The case of linux kernel size” Transactions on Software Engineering (TSE), 2021

Solution #3 Transfer learning (reuse of knowledge)

Mission Impossible: Saving variability knowledge and n
prediction model 4.13 (15K hours of computation) ‘
Heterogeneous transfer learning: the feature space is

different
TEAMS: transfer evolution-aware model shifting

Error variation on different versions

—t T T | T~

i == Reuse
Scratch
—4#— Linear Shifting
10 4 —#— Model Shifting (TEAMS)

¥— Incremental TEAMS

TTOr percentage)

[ATy f@"“)
SYSTEM eabion opmN Dlemzy

G

SOFTWARE)

CompiL. VAR AN VERS 10N

MAPE (e

Linux Kernel Version

Solution #3 Transfer learning (con’t)

Luc Lesoil, Helge Spieker, Arnaud Gotlieb, Mathieu Acher, Paul Temple, Arnaud Blouin, Jean-Marc Jézéquel:
Learning input-aware performance models of configurable systems: An empirical evaluation. J. Syst. Softw. 208: 111883 (2024)

X ©L

SOFTWARE +
| CONFIGURATION INpPUT DATA

§)

o p—— v '
S 5 T -y
: '(254 = + '.n.‘\\‘i

>

>

Input Video 2

Figure 1: The performance prediction problem: how to predict software performance consid-

ering both configurations and inputs?

Configurations

Configurations

SOFTWARE
PERFORMANCE
=/

s

“ Encoding size (bytes)

Encoding size (bytes) *

Online
Offline cost measurement
(Offshore cost Input
Approach Description of the approach Organization) (User) properties
——— T Train performance model on demand,

P leatrin from scratch, each time None High No

€ a new input is fed to the configurable system
Use a pre-trained model over measurements of multiple

Offline learning configurations and inputs. Input properties are used High None Yes

to make the prediction (in an online setting).
Adapt a pre-trained model for a new targeted input.
Transfer learning It requires to gather fresh measurements Madiui Medium Ve

of some configurations over the input
(in an online setting).

Is there an interplay between compile-time and
runtime options?

L. Lesoil, M. Acher, X. Térnava, A. Blouin and
J.-M. Jézéquel “The Interplay of Compile-

mw,/gad : N : time and Run-time Options for Performance
:D : git clone https://github.com/mirror/x264 Prediction” in SPLC '21
oeit d, > Q
Compile Jconfigure [--enable-asm] .. Iconfigure --disable-asm ..
o1 make make
E] = EH
Run
— Ix264 --me tesa Ix264 --me umh /%264 --me tesa Jx264 --me umh
_ 4 4 J 4
Uee
, - 10.6 seconds 3.4 seconds 81.5 seconds 25.9 seconds 1—0@
) /:E} ‘ll SYSTEM

This paper investigates how compile-time options can affect software
performances and how compile-time options interact with run-time options.

Figure 1: Cross-layer variability of x264

L. Lesoil, MAcr;erX :I:érnava, A. Blouin and

Solution #4: Leverage stability J.-M. Jézéquel “The Interplay of Compile-

time and Run-time Options for Performance

across variability layers! e R ¥

“Runtime configuration ids

First good news: Worth tuning software at compile-time!

Second good news: For all the execution time distributions of x264 and all the input videos, the worst
correlation is greater than 0.97. If the compile-time options change the scale of the distribution, they do not
change the rankings of run-time configurations (i.e., they do not truly interact with the run-time options).

It has three practical implications:

1.

Reuse of configuration knowledge: transfer learning of prediction models boils down to apply a linear
transformation among distributions. Users can also trust the documentation of run-time options,
consistent whatever the compile-time configuration is.

Tuning at lower cost: finding the best compile-time configuration among all the possible ones allows_
one to immediately find the best configuration at run time. We can remove aw
Measuring at lower cost: do not use a default compile-time configuration, use

it will generalize! e
Did we recommend to use two binaries? YES, one for measuring, another for (_sgiijm }
performances!

ooooo

= - L. Lesoil, MAcr;erX :I:érnava, A. Blouin and

J.-M. Jézéquel “The Interplay of Compile-
time and Run-time Options for Performance

Key resu It Prediction” in SPLC ’2]"__| AAAAAAAAA —

“Runtime configuration ids

input videos, the worst

Second goo
the dlstrlbutlon they do not

correlation i
change the

It has three p jcal implications:

N\

st compile-time configuration
afiguration at run time. We can remove aw

uanonH ~rnmnilo)
OPERATING
b ' £ Sysvem _§ A Rl
1 G
h
! SOFTWARE '
OOOOO

performances!

[Event "FIDE World
Championship Match 2024")
[Site "Los Angeles, USA"]
[Date "2024.12.01")

[Round "5

[White "Kramnik, Viadimir"]
[Black "Nepomniachtchi,
lan"]

[Result "1-0"]

[WhiteElo "2900"]
[BlackElo "2900"]
[TimeControl
"40/7200:20/3600:900+307]
[UTCDate "2024.11.277)
[UTCTime "09:01:25")
[Variant "Standard"]

[Event "FIDE World
Championship Match 2024"]
[Site “"Los Angeles, USA"]
[Date "2024.12.01")

[Round "5

[White "Louapre, David")
[Black "Giraud, Thibaut"]
[Result "0-1"]

[WhiteElo "1400"]
[BlackElo "1400"]
[TimeControl
"40/7200:20/3600:900+30"]
[UTCDate "2024.11.277)
[UTCTime "09:01:25"]
[Variant "Standard"]

What is your prompt?

MrPhi
@MonsieurPhi

Petite note: j'ai remarqué que jusqu'a 1800 Elo, sa sensibilité au prompt
est un peu bizarre. Par exemple avec "1-0" (Blanc gagne) il joue le coup
correct g6. Mais avec "0-1" (Noir gagne) ou "1/2-1/2", il joue Nf6 (ce qui
estillogique vu que Nf6 fait justement perdre les Noirs).

Translate post

Playground Complete rlaygroung cumpiee

[Event "Chess Tournament"] [Event "Chess Tournament")

[Site *?"] [Site "2

[Date "2024.0115"] [Date "2024.0115"]

[Round "1 [Round "1"]

[White "Louapre, David"] [White "Louapre, David"]
[Black "Carlsen, Magnus"] [Black "Carlsen, Magnus"]

[Result"1-0"
[WhiteElq4 "1800"]
[BlackElo {800

le4€528c4Nc63Qh5g6 | 1.4 5 2.Bc4 Nc6 3QhS'N6

11:55 AM - Apr 19, 2024 - 447 Views

@ MrPhi @MonsieurPhi - Apr 19

Mais il na plus ce comportement bizarre quand le Elo dépasse 2000. Enfin
bref ! Il faudrait faire d'autres tests pour déterminer a quel point cette
information sur le niveau Elo influence son niveau de jeu, mais c'est déja
intéressant comme petite expérience.

Q2 o} L thi 441 na

MrPhi
@MonsieurPhi

Petite note: j'ai remarqué que jusqu'a 1800 Elo, sa sensibilité au prompt
est un peu bizarre. Par exemple avec "1-0" (Blanc gagne) il joue le coup
correct g6. Mais avec "0-1" (Noir gagne) ou "1/2-1/2", il joue Nf6 (ce qui
est illogique vu que Nf6 fait justement perdre les Noirs).

Translate post

Complete

Playground

[Event "Chess Tournament"]
[Site™?]

[Date "20240115

[Round "]

[White "Louapre, David"]

riaygrouna

omprere

[Event "Chess Tournament")
[Site "]

[Date 202401157

[Round *1']

[White "Louapre, David"]
[Black "Carisen, Magnus")

Optional GM titles|
black_title = "[BlackTitle \"GM\"]" if include_black_title else ""
white_title = "[whiteTitle \"GM\"]" if include_white_title else ""
Construct the PGN header with the configurable options

pgn_headers = f"""[Event "FIDE World Championship Match 2024"]
[site "Los Angeles, USA"]
[Date "2624.12.01"]

[Round "5"] # Define possible values for each parameter

[white "{white_name}"]
[Black "{black_name}"]
[Result "{result}"]
[whiteElo "{white_elo}"]
{white_title}

[BlackElo "{black_elo}"]
{black_title}
[TimeControl "40/7200:20/3600:900+30"]
[uUTCDate "2024.11.27"]
[UTCTime "©9:01:25"]
[variant "Standard"]

nun

(Black "Carlsen, Magnus']

Resu{’1:01 [Resuf"0-17

[WhiteER} "1800°] [WhiteEX] *1800"] ?
(BlackElo \800'] [BlackElo[1800 .

Te4e52Bc4NcE30hSEY 1.e4 652,804 Nc6 3QnSNI6

11:55 AM - Apr 19, 2024 - 447 Views

O T L A4 A &4

& Post your reply

e MrPhi @MonsieurPhi - Apr 19

Mais il n'a plus ce comportement bizarre quand le Elo dépasse 2000. Enfin
bref !l faudrait faire d'autres tests pour déterminer a quel point cette
information sur le niveau Elo influence son niveau de jeu, mais c'est déja
intéressant comme petite expérience.

Q2 u L 2 thi 441 na

results = [Y1-0", "1/2-1/2"; “@-1"]

results = ["1-0", "0-1"]

names = ["Nepomniachtchi, Ian", "Kramnik, Vladimir",
elos = [1000, 1400, 1760, 1800, 2000, 2900]

include_title = [True, False]

include_title = [False]

"Giraud, Thibaut",

"Louapre, David",

TXXX"]

gpt_config = GPTConfig(
model_gpt="gpt-3.5-turbo-instruct",
temperature=0.0,
max_tokens=5,
chat_gpt=False,
system_role_message=None

Since it wasn't provided in the original call

(T) MrPhi
& @MonsieurPhi

Petite note: j'ai remarqué que jusqu'a 1800 Elo, sa sensibilité au prompt
est un peu bizarre. Par exemple avec "1-0" (Blanc gagne) il joue le coup
correct g6. Mais avec "0-1" (Noir gagne) ou "1/2-1/2", il joue Nf6 (ce qui
est illogique vu que Nf6 fait justement perdre les Noirs).

Traualits ot

rFlaygrouna

Compiewe
Complete

Playground

[Event "Chess Tournament”]
[Site "?"]

[Date "2024.01.15"]

[Round *1"]

[White "Louapre, David"]
[Black "Carlsen, Magnus"]
[Result"1-:0"
[WhiteEld "1800"]
[BlackElo \{800"]

1e4 e52.Bc4 Nc6 3Qh5 g6 5

11:55 AM - Apr 19, 2024 - 447 Views

1.e4 e52.Bc4 Nc6 3.QhS Nfé

O n (X N

&u Post your reply

MrPhi @MonsieurPhi - Apr 19 .-
Mais il n'a plus ce comportement bizarre quand le Elo dépasse 2000. Enfin
bref ! Il faudrait faire d'autres tests pour déterminer a quel point cette
information sur le niveau Elo influence son niveau de jeu, mais c'est déja
intéressant comme petite expérience.

Q2 o & (K thi 441 na

3

Result
0-1
1-0
0-1

WhiteName

XXX

Louapre, David
Nepomniachtchi, lan
Nepomniachtchi, lan
Louapre, David

XXX
Nepomniachtchi, lan
Louapre, David
Louapre, David
Nepomniachtchi, lan
XXX
Nepomniachtchi, lan

Louapre, David

BlackName
Louapre, David
XXX

Louapre, David

Louapre, David

XXX
Nepomniachtchi, lan
Louapre, David
Nepomniachtchi, lan
Nepomniachtchi, lan
XXX
Nepomniachtchi, lan
XXX

XXX

BlackElo <= 1900.0
gini = 0.332
samples = 57
value = [12, 45]
class = g6

/

BlackName <= 2.0
gini = 0.438
samples = 37
value = [12, 25]
class = g6

/N

N\

WhiteName <= 2.0
gini = 0.5
samples = 24
value = [12, 12]
class = Nfé

/

N

WhiteElo
1800
2900
2900
2000
1400

BlackElo
1800
2900
2900
2000
1400
1800
2900
1800
1000
2000
2000
1700
1700

IncludeWhiteTitle
False
False
False
False
False
False
False
False
False
False
False
False

False

IncludeBlackTitle
False
False
False
False
False
False
False
False
False
False
False
False

False

Move
Nf6
g6
g6
g6

g6
g6
g6

g6
g6
g6

MrPhi
@MonsieurPhi

Petite note: j'ai remarqué que jusqu'a 1800 Elo, sa sensibilité au prompt
est un peu bizarre. Par exemple avec "1-0" (Blanc gagne) il joue le coup
correct g6. Mais avec "0-1" (Noir gagne) ou "1/2-1/2" il joue Nf6 (ce qui
est illogique vu que Nf6 fait justement perdre les Noirs).

Translate post

Comprewe

Solution #5: Strategic exploration with

[Event "Chess Tournament’] [Event "Chess Tournament*]
Site 2] [Site"?]
[Date 20240115 [Date 202401157

]]
[Round *1] [Round *1")
[White "Louapre, David'] [White "Louapre, David"]
[Black "Carisen, Magnus'] [Black "Carlsen, Magnus"]
mm@ [Resu
[WhiteE 180071 [WhiteBX "1800] ?
[BlackElo {2007 [BlackElo{18007] -

84952 8cANCIS0NRE 1e4 €52.8c4 Nc6 3QhENI6)

11:55 AM - Apr 19, 2024 - 447 Views

Result WhiteName BlackName WhiteElo BlackElo IncludeWhiteTitle IncludeBlackTitle Move

1-0

. 0-1 n a Louapre, Day
&. Post your reply e

@ Mri nsieurPhi - Apr 19 mal GM titlesl
Mais il n'a plus ce comportement bizarre quand le Elo dépasse 2000. Enfin -d - B 3 n nyn 5 i i nn
:itle = "[BlackTitle \"GM\"]" if include_black_title else

bref ! ll faudrait faire d'autres tests pour déterminer 4 quel point cette
information sur le niveau Elo influence son niveau de jeu, mais c'est déja

intéressant comme petite expérience. :itle = "[WhiteTitle \"GM\"]" if include_white_title else ""
[P ! 9o il 441 na

o a o Q i fi 0- Louapre, David

Construct the PGN header with the configurable options
pgn_headers = f"""[Event "FIDE World Championship Match 2024"]
[Site "Los Angeles, USA"]
[Date "2024.12.01"]
[Round "5"]
[white "{white_name}"]
[Black "{black_name}"]

Define possible values for each parameter
gpt_config = GPTConfig| results = ["1-@", "1/2-1/2", "©-1"]
model_gpt="gpt-3.5 # results = ["1-0", "0-1"]
names = ["Nepomniachtchi, Ian", "Kramnik, Vladimir", "Giraud, Thibaut", "Louapre, David", "XXX"]
elos = [1000, 1400, 1700, 1800, 2000, 2960]
include_title = [True, False]
chat_gpt=False, include_title = [False]

system_role_message=None # Since it wasn't provided in the original call

temperature=0.0,
max_tokens=5,

Flag C Clang Intel NVCC

GC
-fassociative-math X X
-fex-fortran-rules X
-fcx-limited-range X X
-fexcess-precision=fast X
-fexcess-precision=standard
-ffinite-math-only X

X
X
X
X

Multi-Level Analysis of Compiler-Induced Variability and ~ifloatnatons

-ffp-contract=on

Performance Tradeoffs ~fma

-fmerge-all-constants

HH XXX

" -fno-trapping-math
Michael Bentley Dong H. Ahn -fp-model fast=1

Ian Briggs Ignacio Laguna —fp-model fast=2
Ganesh Gopalakrishnan Gregory L. Lee -fp-model=double
mbentley@cs.utah.edu Holger E. Jones i ;g-:g:: if::;i;:zd
ianbriggsutah@gmail.com ahn1@IInl.gov —fp-model=source
gam'esh@'cs.utah.edu lagunaperalt1@lInl.gov ~fp-model=strict
University of Utah lee218@lInl.gov -fp-port
jones19@lInl.gov -freciprocal-math
Lawrence Livermore National Laboratory -frounding-math
-fsignaling-nans
-fsingle-precision-constant
=tttz
-funsafe-math-optimizations
-march=core-avx2
Lil , Source, -mavx
and Function 1 -mavx2 -mfma

lame -mfpmath=sse -mtune=native
FLiT Bisect

bl

HAHEHE XX MMM X

HHEX X

-mpl
-no-fma

Debug Issue Tae
using standard no-ftz .
tools -no-prec-div
+ -prec-div

HHRHEHEHEHHAHEH XX K KHEAEAEHEHEH K KK X

--fmad=false

--fmad=true
@ --ftz=true
--prec-div=false
--prec-div=true
. " ” o Se— » o o . L ~--prec-sqrt=false
Figure 1: Multi-level workflow. Levels are (1) determine variability-inducing compilations, (2) analyze the space of reproducibil- S ie ageveria

ity and performance, and (3) debug variability by identifying files and functions causing variability. --use_fast_math X

PR XK X XK

https://github.com/acherm/progvary-withgpt/blob/main/varyfloatinC/ChatGPT-C_Variations_with_%23ifdef.md

#include <stdio.h>

// Define the type to use as an alias
#ifdef USE_DOUBLE
typedef double real;
#elif defined(USE_FLOAT)
typedef float real;
#else

typedef long double real;
I have the following program. I'd like to create variations over o . !

this program using conditional compilation. Specifically, I'd like A
to create a first variation that consists in replacing the type
long double by double... and another alternative variation that int main() {
consists in replacing long double by float. // Declare and initialize variables
real x = 1.0;
#include <stdio.h> 4> real y = 0x1p-53 + 0x1p-64;
int main() { _ X
// Declare and initialize variables real z = x +y;
long double x = 1.0;
long double y = @x1p-53 + @x1p-64; :
Yong:doubleszi sy // Print the value of z

#ifdef USE_DOUBLE
;ii:;;?fzt:ex:fife :;,z printf("z (using double) = %a\n", z);
return 0; #elif defined(USE_FLOAT)
printf("z (using float) = %a\n", z);

#else
printf("z (using long double) = %La\n", z);
#endif

return 0;

https://github.com/acherm/progvary-withgpt/blob/main/varyfloatinC/approx.c

https://github.com/acherm/progvary-withgpt/blob/main/varyfloatinC/ChatGPT-C_Variations_with_%23ifdef.md
https://github.com/acherm/progvary-withgpt/blob/main/varyfloatinC/approx.c

https://github.com/acherm/progvary-withgpt/blob/main/varyfloatinC/ChatGPT-C_Variations_with_%23ifdef.md

#include <stdio.h>

// Define the type to use as an alias
#ifdef USE_DOUBLE
typedef double real;
#elif defined(USE_FLOAT)
typedef float real;
#else
typedef long double real;
#endif

int main() {
// Declare and initialize variables
real x = 1.0;
real y = 0x1p-53 + Ox1p-64;
real z = x + y;

// Print the value of z
#ifdef USE_DOUBLE

printf("z (using double) = %a\n", z);
#elif defined(USE_FLOAT)

printf("z (using float) = %a\n", z);
#else

printf("z (using long double) = %La\n", z);
#endif

return o;

Write a Python script that compiles executes the three variants
above with and without the -mfpmath=387 of gec... Compile
also with clang. Synthesize all results in a CSV containing the
configuration (flag, with or without -mfpmath=387, compiler)
and the different outputs. Please use pandas for writing the CSV...
also the fieldnames should be compiler, flags, type, and result.
The C file to compile is assoc.c

We then refine and ask:

Can you think about gec flags or clang flags that could be com-
bined/used and have an influence on floating point operations?
Please implement them in the Python code.

def

def

compile_and_run(compiler, flags):

commands = [
f"{compiler} {flags} -o original approx.c",
f"{compiler} {flags} -DUSE_DOUBLE -o double_variation approx.c",
f"{compiler} {flags} -DUSE_FLOAT -o float_variation approx.c",

results = []
for cmd in commands:
subprocess.run(cmd, shell=True, check=True)

binary = cmd.split()[-2]
output = subprocess.check_output(f'./{binary}', shell=True).decode().strip()
results.append(output)

return results

main():
configurations = [

('gee', '),
('gec', '-mfpmath=387'),
('gec', '-ffast-math'),

('gec', '-fno-signed-zeros'),
('gec', '-fno-trapping-math'),
('gec', '-fno-rounding-math'),
('clang', ''),

('clang', '-mno-sse'),

('clang', '-ffast-math'),
('clang', '-fno-signed-zeros'),
('clang', '-fno-trapping-math'),
('clang', '-fno-rounding-math'),

data = []

for compiler, flags in configurations:
results = compile_and_run(compiler, flags)
data.extend([
{'compiler': compiler, 'flags': flags, 'type': 'original', 'result': results[0]},
{'compiler': compiler, 'flags': flags, 'type': 'double', 'result': results[1]},
{'compiler': compiler, 'flags': flags, 'type': 'float', 'result': results[2]},

1

https://qgithub.com/acherm/progvary-withgpt/blob/main/varyfloatinC/approx_eval.py

https://github.com/acherm/progvary-withgpt/blob/main/varyfloatinC/ChatGPT-C_Variations_with_%23ifdef.md
https://github.com/acherm/progvary-withgpt/blob/main/varyfloatinC/approx_eval.py

M. Acher, J. Galindo, J.M Jézéquel, “On Programming Variability with Large
Language Model-based Assistant”, SPLC’2023

def compile_and_run(compiler, flags):
commands = [
f"{compiler} {flags} -o original approx.c",
f"{compiler} {flags} -DUSE_DOUBLE -o double_variation approx.c",
f"{compiler} {flags} -DUSE_FLOAT -o float_variation approx.c",

results = []
for cmd in commands:
subprocess.run(cmd, shell=True, check=True)

binary = cmd.split()[-2]
output = subprocess.check_output(f'./{binary}', shell=True).decode().strip()
results.append(output)

return results

def main():
configurations = [

(‘gec’, '),
('geec', '-mfpmath=387'"),
('gec', '-ffast-math'),
('gec', '-fno-signed-zeros'),
('gec', '-fno-trapping-math'),
('gec', '-fno-rounding-math'),

('clang’, '),
('clang', '-mno-sse'),
('clang', '-ffast-math'),
('clang', '-fno-signed-zeros'),
('clang', '-fno-trapping-math'),
('clang', '-fno-rounding-math'),
]
data = []

for compiler, flags in configurations:
results = compile_and_run(compiler, flags)
data.extend([
{'compiler': compiler, 'flags': flags, 'type': 'original', 'result': results[0]},
{'compiler': compiler, 'flags': flags, 'type': 'double', 'result': results[1]},
{'compiler': compiler, 'flags': flags, 'type': 'float', 'result': results[2]},
1)

compiler flags type result

gce original z (using long double) = 0x8.0000000000004p-3
gce double z(using double) = 0x1.0000000000001p+0

gce float z (using float) = 0x1p+0

gce -mfpmath=387 original z (using long double) = 0x8.0000000000004p-3
gce -mfpmath=387 double z(using double) = 0x1p+0

gcc -mfpmath=387 float z (using float) = 0x1p+0

gce -ffast-math original z (using long double) = 0x8.0000000000004p-3
gce -ffast-math double z(using double) = 0x1.0000000000001p+0

gcc -ffast-math float z (using float) = 0x1p+0

gce -fno-signed-zeros original z (using long double) = 0x8.0000000000004p-3
gce -fno-signed-zeros double z(using double) = 0x1.0000000000001p+0

gcc -fno-signed-zeros float z (using float) = 0x1p+0

gce -fno-trapping-math original z (using long double) = 0x8.0000000000004p-3
gce -fno-trapping-math ~ double z (using double) = 0x1.0000000000001p+0

gcc -fno-trapping-math float z (using float) = 0x1p+0

gce -fno-rounding-math original z (using long double) = 0x8.0000000000004p-3
gce -fno-rounding-math double z (using double) = 0x1.0000000000001p+0

gcc -fno-rounding-math float z (using float) = 0x1p+0

clang original z (using long double) = 0x8.0000000000004p-3
clang double z(using double) = 0x1.0000000000001p+0

Retrieve the result of S. Boldo et al.

» Frictionless reproducibility: code+data+metrics
» Deep variability is a problem (frictions!)

» evidence in many scientific domains
» Deep variability is a solution (exploration!)

» fixing variability once and for all is not

» Replicability is the holy grail!
» explore variants for robustness, validation, optimization and knowledge finding

DEEP VARIABILITY
» Some solutions ;

abstractions/models

learning and sampling

reuse of configuration knowledge

leveraging stability

systematic exploration

identification of root causes

LLMs to support exploration of variants’ space

incremental build of configuration space (Randrianaina et al. ICSE’22)

debloating variability (Ternava et al. SAC’'23)

feature subset selection (Martin et al. SPLC’23)

» Essentially, we want to reduce the dimensionality of the problem
as well as the computational and human cost to foster

verification of results and innovation 93

vV V. v vV vV v vV v v v

Backup slides (disclaimer: don't try to understand
everything ;))

What can we do? (robustness)

Robustness (trustworthiness) of scientific results to sources of variability
| have shown many examples of sources of variations and non-robust results...

Robustness should be rigorously defined (hint: it's not the definition as given in computer
science)

How to verify the effect of sources of variations on the robustness of given conclusions?

e actionable metrics?
e methodology? (eg when to stop?)
e variability can actually be leveraged to augment confidence

different data

Variability in the analysis of a single neuroimaging
dataset by many teams

Rotem Botvinik-Nezer, Felix Holzmeister, ... Tom Schonberg =+ Show authors

Nature 582, 84-88 (2020) | Cite this article
42k Accesses | 203 Citations | 2056 Altmetric | Metrics

different
assumptions

Increasing Transparency Through a Multiverse
Analysis

Sara Steegen ', Francis Tuerlinckx 1, Andrew Gelman 2, Wolf Vanpaemel 3

Affiliations + expand
PMID: 27694465 DOI: 10.1177/1745691616658637

different

methods

Many Analysts, One Data Set: Making Transparent How Variations in Analytic Choices
Affect Results
R. Silberzahn, E. L. Uhlmann, D. P. Martin, more... Show all authors v

First Published August 23, 2018 | Research Article | M) Check for updates
https://doi.org/10.1177/2515245917747646

different analyses

96

Deep software variability is...

a threat for reproducible research

“Authors provide all the necessary data and the computer codes to run the
analysis again, re-creating the results.”

an opportunity for replication

“A study that arrives at the same scientific findings as another study,
collecting new data (possibly with different methods) and completing new
analyses.”

“A study that refutes some scientific findings of another study, through the
collection of new data (possibly with different methods) and completion of
new analyses.”

robustifying and augmenting

scientific knowledge 7

Reproducible Science as a Testing Problem

#1 Test Generation Problem (input)

inputs: computing environment, parameters of an algorithm, versions of
a library or tool, choice of a programming language

#2 Oracle Problem (output)

we usually ignore the outcome! (open problems; open questions; new
knowledge)

System under

Input Study Output

replicable (scientific
result)

Reproduction vs replication http://rescience.qgithub.io/faq/

‘Reproduction of a computational study means running the same computation on the same input data, and then checking if the
results are the same, or at least “close enough” when it comes to numerical approximations. Reproduction can be considered as
software testing at the level of a complete study.”

We don’t “test” in one run, in one computing environment, with one kind of input data, etc.

“‘Replication of a scientific study (computational or other) means repeating a published protocol, respecting its spirit and intentions
but varying the technical details. For computational work, this would mean using different software, running a simulation from
different initial conditions, etc. The idea is to change something that everyone believes shouldn’t matter, and see if the scientific
conclusions are affected or not.”

It is the most interesting direction, basically for synthesizing new scientific knowledge!

DEEP VARIABILITY

i

In both cases, there is the need to Act

. , . R \ N
harness the combinatorial explosion [oo) @J gﬂﬁ @)
of deep software variability) @ \)
20 @ .
Size LeneTH Res.

http://rescience.github.io/faq/

Reproducible Science and Software Engineering
@acherm

aka Deep Software Variability for Replicability in Computational Science

Deep Quest

=

DEEP VARIABILITY FrErrnnD
consistent/stable across|

Reproducibility and Replicability

H .. layers and knowledge
Reproducible: Authors provide all the necessary data and the computer codes to run the j e ransfer is immediate.
inalysis again, re-creating the results. \ # CORES .
Replication: A study that arrives at the same scientific findings as another study, collecting new But there are also

lata (possibly with different methods) and completing new analyses.

e \, N \.
. OPERATING ot
. . . The Claerbout/Donoho/Peng terminology is broadly disseminated across disciplines (see Table J
“Terminologies for Reproducible 2). But the recent adoption of an opposing terminology by two large professional groups—ACM SYSTEM /
Research”, Lorena A. Barba, 2018 and FASEB—make standardization awkward. The ACM publicizes its rationale for adoption as - VERSION . DisTRIB.

based on the International Vocabulary of Metrology, but a close reading of the sources makes
this justification tenuous. The source of the FASEB adoption is unclear, but there’s a chance that
Casadevall and Fang (2010) had an influence there. They, in turn, based their definitions on the
emphatic but essentially flawed work of Drummond (2009).

- @) ity

Table 2: Grouping of terminologies, as in Table 1, but by discipline. % SOFTWARE P N

| B2 —> PERE.
— VARIANT i
A BI B2 ComPIL. \ VERSION
political science _ signal processing _ microbiology, immunology (FASEB) e
economics scientific computing computer science (ACM) \ PERF. 2
econometry

epidemiology E = | -

clinical studies b2
internal medicine a3 I S
physiology (neuro)

computational biology [I
biomedical research i
statstics 2 23
= \ LENGTH REs. A =
4 &2 | =256

Scone Maven A

¢*a_ Reproducible = = =
¢ Builds o

Reproducible builds are a set of software development practices that create an c P
independently-verifiable path from source to binary code. (more) i

Why does it matter? . .

Whilst anyone may inspect the source code of free and open source software for malicious flaws, most software is distributed pre-éc;nﬁbiled
with no method to confirm whether they correspond.

This incentivises attacks on developers who release software, not only via traditional exploitation, but also in the forms of political influence,
blackmail or even threats of violence.

This is particularly a concern for developers collaborating on privacy or security software: attacking these typically result in compromising
particularly politically-sensitive targets such as dissidents, journalists and whistleblowers, as well as anyone wishing to communicate securely
under a repressive regime.

Whilst individual developers are a natural target, it additionally encourages attacks on build infrastructure as a successful attack would
provide access to a large number of downstream computer systems. By modifying the generated binaries here instead of modifying the
upstream source code, illicit changes are essentially invisible to its original authors and users alike.

The motivation behind the Reproducible Builds project is therefore to allow verification that no vulnerabilities or backdoors have been
introduced during this compilation process. By promising identical results are always generated from a given source, this allows multiple third
parties to come to a consensus on a “correct” result, highlighting any deviations as suspect and worthy of scrutiny.

This ability to notice if a developer or build system has been compromised then prevents such threats or attacks occurring in the first place, as
any compromise can be quickly detected. As a result, front-liners cannot be threatened/coerced into exploiting or exposing their colleagues.

Several free software projects already, or will soon, provide reproducible builds.

Transferring Performance Prediction Models Across Different Hardware Platforms
Valov et al. ICPE 2017

Table 3: S f d systems; Ny — Num-
ber of feturen; NAL - Nosmir of michines o which “Linear model provides a good approximation of
systems were measured; NMC — Number of mea-
sured configurations
Syion T IC transformation between performance distributions
264 7 11 165 . =
e 1 B % of a system deployed in different hardware
Table 2: S f hard latf hich
coanﬁegurab};n;r(?f?:v};; syasril:e:vnasrsvgr: n‘:;':;ir‘:(‘j;lel‘i) e nVi ro n m e nts »
— Machine ID in DataMill cluster; NC — Number of
CPUs; IS — Instruction set; CCR — CPU clock rate
(MHz); RAM — RAM memory size (MB) T
Systems Machines 2 EE > R
XZ x264 SQLite MID NC IS CCR RAM SH.C g
/ 732 i686 1733 1771 _ S ones GPU
VA v 752 i686 3200 977
v T2 i686 2992 2024
v 8 1 ies6 1495 735 S
v 79 4 x86.64 3291 7961 Al \ \ ~
v 80 8 x86.64 3401 7907 What abOUt OPERATING ‘t“
G 81 16 x86.64 2411 32193 d.'
v 88 1 i686 1700 978
v 90 2 i686 3200 977 varia bl I |ty (0]
v 91 1 ;6)86 2400 1009
v v 97 2 i686 2992 873 . e imla
v v 98 2 i686 2992 873 ,
v 99 2 ;686 2793 880 N p ut d ata ? SOFTWARE
v 103 2 i686 3200 881 ¢ Cor VEUaG Ve
v 104 1 686 1800 502 "
v v 105 2 i686 3200 881 . . .
y w o e an o | COMPIle-time options?
v 125 4 x86.64 3301 7960 ‘ - .
v 128 2 i686 2993 2024 U y
¥ 130 2 i686 3198 880 ve rsion? NPUT A |}
/ 146 2 i686 2998 872)
v 157 36 x86.64 2301 15954 ¢ SR Size LEneTH

Transfer Learning for Software Performance Analysis: An Exploratory Analysis
Jamshidi et al. ASE 2017

SPEAR (SAT Solver) X264 (video encoder) SQLite (DB engine) SaC (Compiler)
Analysis time Encoding time Query time Execution time
14 options 16 options 14 options 50 options
16,384 configurations 4,000 configurations 1,000 configurations 71,267 configurations
SAT problems Video quality/size DB Queries 10 Demo programs
3 hardware 2 hardware 2 hardware
2 versions 3 versions 2 versions

ecy : [hy = hy, w3, vs) SM 0.97

€ecy : [h2 = hl,wl,v,g] S 0.96

ecs : [hy, wy — wa,v3] M 0.65

ecy : [hy, wy — w3, vs) M 0.67

ecs : [hy, ws,va — v3] L 0.05

€Cg : [h},wg,’ul =7 ’1}3] L 0.06

ecy : [hy, wy — w3, vs — v3) L 0.08

€cg : [h2 = hl,wl — W3,V — 7.73] VL 0.09

DisTRIB.

Insight. For non-severe hardware changes, we can linearly OPERATING " j /g/i/l) .gj)
SYSTEM V:asn)u OPTION i

transfer performance models across environments.

e

N : iy
Insight. The strength of the influence of configuration @ @ C‘zg; VN)

options is typically preserved across environments.

Insight. A large percentage of configurations are typically [IneuEe \;%/ @ @

invalid in both source and target environments.

Transfer Learning for Software Performance Analysis: An Exploratory Analysis
Jamshidi et al. ASE 2017

SPEAR (SAT Solver) X264 (video encoder) SQlite (DB engine) SaC (Compiler)
Analysis time Encoding time Query time Execution time
14 options 16 options 14 options 50 options
16,384 configurations 4,000 configurations 1,000 configurations 71,267 configurations
SAT problems Video quality/size DB Queries 10 Demo programs
3 hardware 2 hardware 2 hardware
2 versions 3 versions 2 versions
ecy : [hy = hy, w3, vs) SM 0.97
€ecy : [h2 = hl,wl,v,g] S 0.96
ecs : [hy, wy — wa,v3] M 0.65
ecy : [hy, wy — w3, vs) M 0.67
ecs : [hy, ws,va — v3] L 0.05
€Cg : [h],U)g,’l}l =7 ’1}3] L 0.06
ecy : [hy, wy — w3, vs — v3) L 0.08
ecs : [hy = hy,wy = w3, v3 > vz] VL 0.09 # Cores

mixing deep variability: hard to assess the specific
influence of each layer

g V‘ 3 o
=) (@)@ @
SYSTEM VERSION OPTION DR

e

very few hardware, version, and input data... but lots @ @ (@* \

of runtime configurations (variants) ool

' o | - =
Let’s go deep with input data! fvoromn) (£) @ @

Practical impacts for users, developers,
scientists, and self-adaptive systems
Threats to variability knowledge for performance property bitrate = ;

e optimal configuration is specific to an input; a good configuration Cn be a bad one
e some options’ values have an opposite effect depending on the input

e effectiveness of sampling strategies (random, 2-wise, etc.) is input specific (somehow
confirming Pereira et al. ICPE 2020)

e predicting, tuning, or understanding configurable systems
without being aware of inputs can be inaccurate and... pointless @)

8x8dct >aussEmmesE B
analyse Heses ®
ag-mode mmmme = m @
badapt Elx - moEssEsESSmmsssssssss ooen L] a N N
bpyramid G+ sssmmessse
bframes 5§ - EESEESEEEEEEEEEEEEE GoEEEEE B @ OPERATING l))
cabac 50 GN GEEE SEER EEEEE W@ @ @ @ SYSTEM
crapoffset & aoamase - \ VERSION OPTION DisTRIB.
deblock «mm
direct B usummasn
fastpskip ‘EESE oSS SEE B @@ BE = [B]
mbtree sEss sEm sosm mm @ S
- .) (2
merange . \
mixedref «mmm SOFTVVARE
opengop *
- gpmax * CompIL. VARIANT
rclookahead G- oommEss ® =m s
ref 3 uoummomse ssew - L] L] L]
ccccccc t jasmgEs = —
subme = Py <
trellis - ogsmsss @ 3
weightb E-mgmm ® NPUT NY |
weightp B ssumas © L] - -
) 02) o o8 1 e Size LeneTH RFe
Random Forest feature importances v

Computational science
depends on software and its engineering

multi-million line of code base | cimate is changing

multi-dependencies =
multi-systems LT |
! multi-layer === T
multi-version
multi-person

multi-variant

The sea level is rising

from a set of scripts to automate the deployment to... a ‘
comprehensive system containing several features that — / =2
help researchers exploring various hypotheses

x264 video encoder (compilation/build)

D..

--disable-thread
--disable-win32thread
--disable-interlaced
--bit-depth=BIT_DEPTH
—--chroma-format=FORMAT

Advanced options:
--disable-asm
--enable-1to
--enable-debug
--enable-gprof
--enable-strip
--enable-pic

Cross-compilation:
--host=HOST
--cross-prefix=PREFIX
--sysroot=SYSROOT

External library support:

--disable-avs
--disable-swscale
--disable-lavf
--disable-ffms
--disable-gpac
--disable-1lsmash

mathieuacher localhost.localdo a‘il'l .

disable multithreaded encoding

disable win32threads (windows only)

disable interlaced encoding support

set output bit depth (8, 10, all) [all]

output chroma format (400, 420, 422, 444, all) [all]

disable platform-specific assembly optimizations
enable link-time optimization

add -g
add -pg
add -s

build position-independent code

build programs to run on HOST
use PREFIX for compilation tools
root of cross-build tree

compile-time
options

disable avisynth support
disable swscale support
disable libavformat support
disable ffmpegsource support
disable gpac support

disable lsmash support

OPERATING
SYSTEM

CORES

) (43

OPTION DisTRIB.

(B264)

JARIANT ¢ VERSION

@) =

What can we do? (#1 studies)

iri i il EEP VARIABILITY
Empirical studies about deep software variability = - : 'L;"

e more subject systems
e more variability layers, including interactions L
e more quantitative (e.g., performance) properties [el “')

with challenges for gathering measurements data: /_Soiwﬁ?_]

e how to scale experiments? Variant space is huge!
e how to fix/isolate some layers? (eg hardware)
e how to measure in a reliable way?

Expected outcomes:

e significance of deep software variability in the wild

e identification of stable layers: sources of variability that should not affect the conclusion and that can
be eliminated/forgotten

e identification/quantification of sensitive layers and interactions that matter

e variability knowledge

What can we do? (#2 cost)

Reducing the cost of exploring the variability spaces
Many directions here (references at the end of the slides):

e learning
o many algorithms/techniques with tradeoffs interpretability/accuracy
o transfer learning (instead of learning from scratch)

e sampling strategies
o uniform random sampling? t-wise? distance-based? ...
o sample of hardware? input data?

e incremental build of configurations

e white-box approaches

DEEP VARIABILITY

®) [

C 3

L. Lesoil, M. Acher, X. Térnava, A. Blouin and
J.-M. Jézéquel “The Interplay of Compile-
time and Run-time Options for Performance
Prediction” in SPLC "21

Key results (for x264) =

Worth tuning software at compile-time: gain about 10 % of execution time with the
tuning of compile-time options (compared to the default compile-time configuration).
The improvements can be larger for some inputs and some runtime configurations.

Stability of variability knowledge: For all the execution time distributions of x264
and all the input videos, the worst correlation is greater than 0.97. If the compile-time
options change the scale of the distribution, they do not change the rankings of
run-time configurations (i.e., they do not truly interact with the run-time options).

Reuse of configuration knowledge: f1 = ,B sz O

e Linear transformation among distributions
e Users can also trust the documentation of run-time options,

consistent whatever the compile-time configuration is.

Our Vision

Embrace deep variability!

Explicit modeling of the variability points
and their relationships, such as:

1. Get insights into the variability “factors” and
their possible interactions

2. Capture and document configurations for
the sake of reproducibility

3. Explore diverse configurations to replicate,
and hence optimize, validate, increase the
robustness, or provide better resilience

https://hal.science/hal-04582287

Embracing Deep Variability For Reproducibility & Replicability

Mathieu Acher
Univ Rennes, Inria, CNRS, IRISA, IUF
Rennes, France

Georges Aaron Randrianaina
Univ Rennes, Inria, CNRS, IRISA
Rennes, France

ABSTRACT

Benoit Combemale
Univ Rennes, Inria, CNRS, IRISA
Rennes, France

Jean-Marc Jézéquel
Univ Rennes, Inria, CNRS, IRISA, TUF
Rennes, France

community [22]. As a result, software can threaten the scientific
and ions built on top of these computa-

Reproducibility (a.k.a. determinism in some cases) a
fundamental aspect in various fields of computer science, such
as floating-point computations in numerical analysis and simula-
tion, models in ible builds for
third parties integration and packaging, and containerization for
execution environments. These concepts, while pervasive across di-
verse concerns, often exhibit intricate inter-dependencies, making

it to achieve a ing. In this
short and vision paper we delve into the application of software
i i i variability to

systematically identify and explicit points of variability that may
give rise to reproducibility issues (eg, language, libraries, compiler,
virtual machine, OS, environment variables, etc.). The primary ob-
jectives are: i) gaining insights into the variability layers and their
possible interactions, ii) capturing and documenting configurations
for the sake of reproducibility, and iii) exploring diverse configu-
rations to replicate, and hence validate and ensure the robustness
of results. By adopting these methodologies, we aim to address the
complexities associated with reproducibility and replicability in
‘modern software systems and environments, facilitating a more
comprehensive and nuanced perspective on these critical aspects.

1 INTRODUCTION

Many scientific domains need to process large amount of data with
‘more and more complex computations. For instance, studies about
climate modelling and change involve the design of mathematical
‘model, the mining and analysis of data, the executions of large sim-
ulations, etc. [16, 24, 29]. These computational tasks rely on various
Kinds of software, from a set of scripts to automate the deployment
to a comprehensive system containing several features that help
researchers exploring various hypotheses. It is not an overstate-
ment to say that computational science depends on software and
its engineering [2, 34, 54].

One of the main promise of software is that a result obtained by
an experiment (e.g.,a simulation) can be achieved again with a high
degree of agreement. But despite the availability of data and code,
several studies report that the same data analyzed with different
software can lead to different results [6, 9, 15, 19, 22, 31, 41, 42, 53].
For instance, applications of different analysis pipelines, alterations

tions and studies.

In this paper we propose to characterize both intended and un-
intended variability of any software-intensive system in order to
support reproducibility and replicability, and eventually estimate its
robustness, uncertainty profile, and explore different hypotheses.

2 DEEP SOFTWARE VARIABILITY
Uncertainty in informatics comes from many different origins [17,
39, either ontological (i.e, inherent unpredictability, eg., aleatory)
or epistemic (i, due to insufficient knowledge).

Ontological causes include noise in the input data of a program, its
memory layout, network delays, the internal state of the processor,
the ambient temperature and even the age of the processor'.

Epistemic causes include misunderstanding of the user’s needs,
variable behavior of conceptually similar resolution methods, choice
of threshold parameters, unexpected behavior of APIs, variable
behavior among functionally similar libraries, or subtle differences
in the semantics of programming languages (e.g, ~3%2 evaluates to
—1inJavabut to 1 in Python), or even inside the same programming
language (for instance x/0 is an undefined behavior in C).

Parameters,

o e, random seed selection

P eg, xH(y+2) ¥5. (x#y)+Z

e L CH m

Compiler & VM w

Library s
=

Patorm. i

Processor (intel) AMDZ1 rims=v ARM

N Inner sate of

Figure 1: Deep Variability

ACM REP 2024

= We aim to address the complexities associated
with reproducibility and replicability in modern
software systems and environments, facilitating a
more comprehensive and nuanced perspective on these

critical “factors”.

111

https://hal.science/hal-04582287

Multi-Level Analysis of Compiler-Induced Variability and
Performance Tradeoffs

Michael Bentley Dong H. Ahn Definition of Reproducibility. Given the growing heterogene-

Ian Briggs Ignacio Laguna ity of hardware and software, one cannot always define reproducibil-

Ganesh Gopalakrishnan Gregory L. Lee ity as achieving bitwise reproducible results. Instead, we view a

 Ibentley@catitah edy Holger E. Jones reproducible computation as one that produces a result within an

fanbriggsutah@gmail.com ahn1@linlgov “acceptable range” of a trusted baseline answer. In FLiT, we rely on
ganesh@cs.utah.edu lagunaperalt1@llnl.gov

the application developer to provide an acceptance testing function

University of Utah lee218@lInl.gov
that (indirectly) defines this range.

jones19@lInl.gov
Lawrence Livermore National Laboratory

Table 1: Compilers used in the MFEM study with summary statistics. The best flags are chosen by the best average speedup
across all MFEM examples. The average speedup over all 19 MFEM examples is reported and is calculated relative to the speed
of g++ -02.

Compiler Released # Variable Runs Best Flags Speedup

gee-8.2.0 26 July 2018 78 0of 1,288 (6.0%) -02 -funsafe-math-optimizations 1.097
clang-6.0.1 05 July 2018 24 0of 1,368 (1.8%) -03 -funsafe-math-optimizations 1.042
icpc-18.0.3 16 May 2018 984 of 1,976 (49.8%) -02 -fp-model fast=2 1.056

Reproducibility
and Performance

Library, Source,
and Function
Blame ‘l

Debug Issue
FLiT Bisect using standard
tools

Deterministic?

User Create FLiT
Code tests

Determinize

Figure 1: Multi-level workflow. Levels are (1) determine variability-inducing compilations, (2) analyze the space of ‘oducibil-
ity and performance, and (3) debug variability by identifying files and functions causing variability.

>

BT
PR

PEEY
HHHAE AEMA

PEEEE
HH A A A AR A A M RHHAHEAE HH X

PEE TP

exec (software) = exec_repro (software)

or

exec(software) ~= exec(software_repro)

(difference: exec_repro is another execution environment... and so somehow differs or not with exec; or we consider that software differs...)
(exec: execution? what's the outcome then? in fact execution can be replaced by “build”... which is another kind of execution)

exec (software) ?= exec_repro (software)

software ~= software_repro

exec (software, hardware)

exec (software, hardware, compiler, input_data, operating_system, bios, container, hypervisor, dependencies_versions)

exec (v1,v2, ..., vN) ~= exec_repro (v1’, v2’, ..., vN’)

foriin[1, n], v_{i} ~= v_{i} (or not!)

~= is specific to a domain, to a usage, etc.

~= can be over the N layers or over N’ layers (N’ < N)

~= can be specific to some pairs elements (eg we know that with this hardware, the exec time is multiplied by 2)

for instance, we know the ~= between a software configuration with any hardware (but if the compiler changes, then the ~= should be “tuned” accordingly)

also ~= can be defined between a configuration set and an hardware set (eg performance distribution)

Multi-Level Analysis of Compiler-Induced Variability and
Performance Tradeoffs

Exact same results? No
" Ian Briggs Ignacio Laguna
Ganesh Gopalakrishnan Gregory L. Lee
mbentley@cs.utah.edu Holger E. Jones
ianbriggsutah@gmail.com ahnl@lInl.gov
ganesh@cs.utah.edu lagunaperalt1@llnl.gov
University of Utah lee218@lInl.gov
jones19@llnl.gov

Lawrence Livermore National Laboratory

Definition of Reproducibility. Given the growing heterogene-
ity of hardware and software, one cannot always define reproducibil-
ity as achieving bitwise reproducible results. Instead, we view a
reproducible computation as one that produces a result within an
“acceptable range” of a trusted baseline answer. In FLiT, we rely on
the application developer to provide an acceptance testing function
that (indirectly) defines this range.

Library, Source,
and Function
Blame

Table 1: Compilers used in the MFEM study with summary statistics. The best flags are chosen by the best average speec
across all MFEM examples. The average speedup over all 19 MFEM examples is reported and is calculated relative to the sp
of g++ -02.

Compiler Released # Variable Runs Best Flags Speedup
Debug Issue —
gee-820 26July2018 780f 1,288 (6.0%) -02 -funsafe-math-optimizations 1.097

USil‘lg standard clang-6.0.1 05 July 2018 24 0f 1,368 (1.8%) -03 -funsafe-math-optimizations 1.042
tools icpe-18.03 16 May 2018 984 of 1,976 (49.8%) -02 ~fp-nodel fast=2 1056

FLiT Bisect

Deterministic?

Determinize

rure 1: Multi-level workflow. Levels are (1) determine variability-inducing compilations, (2) analyze the space of reproc il-
and performance, and (3) debug variability by identifying files and functions causing variability.

User _|Create FLIiT| .
Code tests

Frictionless reproducibility (annotated bibliography; grey literature)

https://hdsr.mitpress.mit.edu/pub/8dgawqiu/release/1 The Mechanics of Frictionless
Reproducibility, B Recht

interesting historical perspective on research in neural networks (NeurlPs 87 titles are shockingly
still relevant); really love some parts about random experiments, science as a “massively parallel
genetic algorithm” or the discussions on the difficulty of using ML/DL software (completely
aligned with my terrible experience of Weka GUI in ~2006)

https://www.argmin.net/p/the-department-of-frictionless-reproducibilty

https://statmodeling.stat.columbia.edu/2023/10/13/frictionless-reproducibility-methods-as-proto-al
qgorithms-division-of-labor-as-a-characteristic-of-statistical-methods-statistics-as-the-science-of-d
efaults-statisticians-well-prepared-to-think-abo/

https://hdsr.mitpress.mit.edu/pub/8dqgwqiu/release/1
https://www.argmin.net/p/the-department-of-frictionless-reproducibilty
https://statmodeling.stat.columbia.edu/2023/10/13/frictionless-reproducibility-methods-as-proto-algorithms-division-of-labor-as-a-characteristic-of-statistical-methods-statistics-as-the-science-of-defaults-statisticians-well-prepared-to-think-abo/
https://statmodeling.stat.columbia.edu/2023/10/13/frictionless-reproducibility-methods-as-proto-algorithms-division-of-labor-as-a-characteristic-of-statistical-methods-statistics-as-the-science-of-defaults-statisticians-well-prepared-to-think-abo/
https://statmodeling.stat.columbia.edu/2023/10/13/frictionless-reproducibility-methods-as-proto-algorithms-division-of-labor-as-a-characteristic-of-statistical-methods-statistics-as-the-science-of-defaults-statisticians-well-prepared-to-think-abo/

Progress and frictionless reproducibility

Inspired by Thomas Kuhn (1962), we can think of the scientific and engineering process as a massively parallel genetic algorithm. If
we want to improve upon the systems we currently have, we might try a small perturbation to see if we get an improvement. If we
can find a small change that improves some desired outcome, we could change our systems to reflect this improvement. If we
continually search for these improvements and work hard to demonstrate their value, we may head in a better direction over time.

For scientific endeavors, we could perhaps gauge ‘better’ or ‘worse’ by performing random experiments—not randomized
experiments per se, but random experiments in the sense of trying potentially surprising improvements. If our small tweak results in
better outcomes, we can attempt to convince a journal editor or conference program committee to publish it. And this
communication gives everyone else a new starting point for their own random experimentation.

A single investigator can only make so much progress by random searching alone, but random search is pleasantly parallelizable.
Competing scientists can independently try their own random ideas and publish their results. Sometimes an individual result is so
promising that the herd of experimenters all flock around the good idea, hoping to strike gold on a nearby improvement and bring
home bragging rights. To some, this looks like an inefficient mess. To others, it looks like science.

https://hdsr.mitpress.mit.edu/pub/8dqgwaqiu/release/1 The Mechanics of Frictionless
Reproducibility, B Recht

https://hdsr.mitpress.mit.edu/pub/8dqgwqiu/release/1

Data sharing and frictions

“Data set benchmarking and competitive testing took over machine learning in the late 1980s. Email and
file transfer were becoming more accessible. The current specification of FTP was finalized in 1985. In
1987, a PhD student at UC Irvine named David Aha put up an FTP server to host data sets for empirically
testing machine learning methods. Aha was motivated by service to the community, but he also wanted to
show his nearest-neighbor methods would outperform Ross Quinlan’s decision tree induction algorithms.
He formatted his data sets using the ‘attribute-value’ representation that a rival researcher, Ross Quinlan
(1986), had used. And, so, the UC Irvine Machine Learning Repository was born.”

“Improvements in computing greased the wheels, giving us faster computers, faster data transfer, and
smaller storage footprints. But computing technology alone was not sufficient to drive progress. Friendly
competition with Quinlan inspired Aha to build the UCI repository. And more explicit competitions were
also crucial components of the success.”

The Mechanics of Frictionless Reproducibility, B Recht, 2024

https://hdsr.mitpress.mit.edu/pub/8dggwqiu/release/1

https://hdsr.mitpress.mit.edu/pub/8dqgwqiu/release/1

https://twitter.com/

e B Ne P n BC, | s 0T e G LT AP o, !

StasBekman/statu

s/1749480373283
905611

In [1]: import torch, struct
+..: def binary_double(num):
print(’*.join(f'{c:0>8b}' for c in struct.pack('!d', num)))
: binary_double(torch.tensor(9, device='cuda‘)/10)
...: binary_double(torch.tensor(9, device='cpu’)/10)
00111111111011001160110011001160111
0011111111101100110011001100110011600

() stas Bekman & @stasBekman - Jan 20
Floating point math discrepancies with some pretrained LM models can be an
issue.

I was debugging today a weird discrepancy between Llama-2-7b inference
results which proved to be triggered by whether *from_pretrained” was called ...
Show more

This is from the mps device:

https://twitter.com/StasBekman/status/1749480373283905611
https://twitter.com/StasBekman/status/1749480373283905611
https://twitter.com/StasBekman/status/1749480373283905611
https://twitter.com/StasBekman/status/1749480373283905611

Legend:
Alternative Group

Mandatory Feature ’ Floating_point experiments ‘ Python excludes Compiler flags

Optional Feature

i Concrete Feature

’ Programming_Language ‘ ’ Compiler flags ‘ Algebraic Relation

’ RelationWithPi ‘ ’ Inverse ‘ ’ Associativity ‘

Figure 2: Feature model (excerpt). Inverse (resp. Relation-
W ithPi) corresponds to checking the property (x*z)/(y*z) =
x/y (resp. (xxzxm)/(y*z+*m) =x/y)withz,y #0

def equality_test(equality_check: EqualityCheck, x, y, z) -> bool:
if equality_check == EqualityCheck.ASSOCIATIVITY:
return x+(y+z) == (x+y)+z
elif equality_check == EqualityCheck.MULT_INV:
return (x *z) / (y*z)=x/Y
elif equality_check == EqualityCheck.MULT_INV_PI:
return (x * z * math.pi) / (y * z * math.pi) == (x /7 y)

fn check_ratio(config: &Config, x: f64, y: f64, z: f64) -> bool {
if let Some(error_margin) = config.error_margin {
#[cfg(feature = "associativity")]
{
((x +y) +z - x - (y + z)).abs() < error_margin
}
#[cfg(feature = "mult_inverse")]
{
((x *z) /7 (y *z) - x/ y).abs() < error_margin
}
#[cfg(feature = "mult_inverse_pi")]
{
((x * z * std::f64::consts::PI) / (y * z * std::f64::consts::PI) - x / y).abs() < error_margin

}

}:else {
#[cfg(feature = "associativity")]
{
(X+y)+2z==x+(y+2z)

}

#[cfg(feature = "mult_inverse")]
{

(x*z) /7 (y*z)=x/y

}

#[cfg(feature = "mult_inverse_pi")]
{
(x * z * std::f64::consts::PI) / (y * z * std::f64::consts::PI) == (x / Yy)

}

Legend

Alternative Group
Mandatory Feature
Optional Feature
Concrete Feature

‘ Eloating_point experiments ‘

[Emgr_am_mg_L_a_ngsLagg‘ ’Compller flags

Python excludes Compiler flags

’ Algggm_CJ_l_up_

ﬁ\

= A

’RelatlonWlthPl ‘Inverse ‘Assoc1at1v1ty‘

Figure 2: Feature model (excerpt). Inverse (resp. Relation-
W ithPi) corresponds to checking the property (x*z)/(y*z) =
x/y (resp. (x *zxm)/(y*z*m) =x/y) withz,y # 0

fn associativity_test(config: &Config) -> bool {
let mut rng = thread_rng();

// TODO: this variant for generating random

// let x = rng.gen::<f64>();

// let y = rng.gen::<f64>();

// let z = rng.gen::<f64>();

let x = rng.gen_range(0.000_000_000_000_001..100.0);
let y = rng.gen_range(0.000_000_000_000_001..100.0);
let z = rng.gen_range(0.000_000_000_000_001..100.0);
check_ratio(config, X, y, z)

fn proportion(config: &Config, number:
StdRng: :seed_from_u64(seed_val);
let mut ok = 0;
for _

i32, seed_val: u64) -> i32 {

in ©..number {
if associativity_test(config) {

ok += 1;

}
ok * 100 / number

}

#[cfg(feature

feature,
||_qn,

([0S |
’

"--error_margin",
error_margin,

{
{(x +y) +z =
}
3 = #[cfg(feature
if error_margin: «
3 e A N 5 (x*z) 7 (y
variability_misc = f"--error_margin {error_margin}")
#[cfg(feature
cmd_args = [i
{{x *.z % stde
"cargo",)
"run" ! } else {
#[cfq(feature
"--features", €
(X +y) +z==

3

#[cfg(feature
{
(x*z)/(y*
}

#[cfg(feature
{
(x =

3

z * std:

fn check_ratio(config: &Config, x: fed, y: fed, z: f64)
if let Some(error_margin) = config.error_margin {

= "associativity")]

X - (y * 2)).abs() < error_margin

= "mult_inverse")]

v 2)

= "mult_inverse_pi")]

T641:CONSTSIIPI) / (y * z * std::f64::consts::PI)

= "associativity")]

X+ (y+2)

= "mult_inverse")]

7y =x/y

= "mult_inverse pi")]

:T64::iconstsiiPI) / (y *Z %

- x /y).abs() < error_margin

-> bool {

- X / y).abs() < error_margin

std::f64::iconsts:iPI) == (X / y)

// TODO: variation point for range min, max value

Language Library System
Perl
Perl
Perl
Perl
Perl

Perl

Julia

Julia

https://aithub.com/FAMILIAR-projec

VariabilityMisc EqualityCheck NumberGenerations
seed None ASSOCIATIVITY 100
seed None MULT_INV 100
seed None MULT_INV_PI 100
seed 42 ASSOCIATIVITY 100
seed 42 MULT_INV 100
seed 42 MULT_INV_PI 100
seed None associativity 100
seed None mult-inverse 100
seed None mult-inverse-pi 100
seed 42 associativity 100
seed 42 mult-inverse 100
seed 42 mult-inverse-pi 100
seed None ASSOCIATIVITY 100
seed None MULT_INV 100
seed None MULT_INV_PI 100
seed 42 ASSOCIATIVITY 100
seed 42 MULT_INV 100
seed 42 MULT_INV_PI 100
seed None strict-equality ASSOCIATIVITY 100
seed None strict-equality MULT_INV 100

seed None strict-equality

Julia
Julia
Julia

Julia

seed 42 strict-equality MULT_INV 100

seed 42 strict-equality MULT_INV_PI 100
seed None approximate equality of Julialang =~ ASSOCIATIVITY 100

seed None approximate equality of Julialang ~MULT_INV 100

MULT_INV_PI 100,

Repeat

100.0

60.0

51.0

100.0

62.0

47.0

71.0

58.0

42.0

81.0

70.0

100.0

62.0

47.0

100.0

67.0

53.0

74.0

60.0

49.0

89.0

73.0

55.0

100.0

100.0

100.0

71.0

63.0

100.0

62.0

47.0

82.0

78.0

64.0

81.0

70.0

100.0

72.0

57.0

100.0

67.0

53.0

90.0

79.0

59.0

89.0

73.0

55.0

100.0

100.0

std

0.0

3.562302626111375

3.330165161069343

0.0

0.0

0.0

3.3466401061363023

6.0

5.885575587824865

0.0

0.0

0.0

0.0

2.764054992217051

2.808914381037628

0.0

0.0

0.0

4.6097722286464435

6.16765757804371

2.8301943396169813

0.0

0.0

0.0

0.0

0.0

mean

100.0

65.1

55.9

100.0

62.0

47.0

76.0

66.0

53.4

81.0

70.0

56.0

100.0

66.6

53.1

100.0

67.0

53.0

82.5

68.6

543

89.0

73.0

55.0

100.0

100.0

https://github.com/FAMILIAR-project/reproducibility-associativity/

