The How and Why of Higher-Order SMT for Prospective Users

Sophie Tourret

Journées Nationales du GDR GPL & AFADL

June 2024

Z3, Alt-Ergo, cvc5, ...

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

• program verification (Boogie, F*, Viper, Why3, Frama-C, Atelier-B...)

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

- program verification (Boogie, F*, Viper, Why3, Frama-C, Atelier-B...)
- symbolic execution (KLEE, S2E, Triton)

Z3, Alt-Ergo, cvc5, ...

SMT is Well-known as a backend for many techniques, including:

- program verification (Boogie, F*, Viper, Why3, Frama-C, Atelier-B...)
- symbolic execution (KLEE, S2E, Triton)
- interactive proof assistants (Isabelle/HOL, Coq, HOL)

Standard SMT Solving

SMT stands for Satisfiability Modulo Theories

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is . . .

2

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is ...

valid when always true,

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is ...

valid when always true,
satisfiable when true at least once,

SMT stands for Satisfiability Modulo Theories

An SMT solver determins the truth value of a formula.

A formula is ...

valid when always true,satisfiable when true at least once,unsatisfiable when never true.

SMT solvers usually operate in first-order logic

+ interpreted symbols in given theories

SMT solvers usually operate in first-order logic

- formula ϕ, ψ : built from $\neg, \land, \lor, \Rightarrow, \Leftrightarrow, \ldots$ and quantifiers
- quantifiers \forall , \exists : $\forall x.\phi$, $\exists y.\psi$
- bound variables: $\forall x, y. P(f(x), y) \lor Q(y)$
- + interpreted symbols in given theories

SMT solvers usually operate in first-order logic

- formula ϕ, ψ : built from $\neg, \land, \lor, \Rightarrow, \Leftrightarrow, \ldots$ and quantifiers
- quantifiers \forall , \exists : \forall x. ϕ , \exists y. ψ
- bound variables: $\forall x, y. P(f(x), y) \lor Q(y)$
- + interpreted symbols in given theories
 - \bullet +, \times , \leq , =, ...

SMT solvers usually operate in first-order logic

- formula ϕ, ψ : built from $\neg, \land, \lor, \Rightarrow, \Leftrightarrow, \ldots$ and quantifiers
- quantifiers \forall , \exists : \forall x. ϕ , \exists y. ψ
- bound variables: $\forall x, y. P(f(x), y) \lor Q(y)$
- + interpreted symbols in given theories
 - \bullet +, \times , \leq , =, ...

Example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

3

Inside an SMT solver

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \left[a \neq b \vee (q(a) \wedge \neg q(f(b) + c)) \right]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (q a) (not (q (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \left[a \neq b \vee (q(a) \wedge \neg q(f(b) + c)) \right]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (q a) (not (q (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \left[a \neq b \vee (q(a) \wedge \neg q(f(b) + c)) \right]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \land b \leq a + c \land c = 0 \land [a \neq b \lor (q(a) \land \neg q(f(b) + c))]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (\leq a b) (\leq b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \left[a \neq b \lor (q(a) \wedge \neg q(f(b) + c)) \right]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \left[a \neq b \vee (q(a) \wedge \neg q(f(b) + c)) \right]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \le b \land b \le a + c \land c = 0 \land \left[a \ne b \lor \left(q(a) \land \neg q(f(b) + c) \right) \right]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \left[a \neq b \vee (q(a) \wedge \neg q(f(b) + c)) \right]$$

encoded in SMT-LIB 2.0 format:

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

5

Returning to our example:

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \left[a \neq b \vee (q(a) \wedge \neg q(f(b) + c)) \right]$$

```
(set-logic QF_UFLIA)
(set-info :source | Example formula in SMT-LIB 2.6 |)
(set-info :smt-lib-version 2.6)
(declare-fun f (Int) Int)
(declare-fun q (Int) Bool)
(declare-fun a () Int)
(declare-fun b () Int)
(declare-fun c () Int)
(assert (and (<= a b) (<= b (+ a c)) (= c 0)
 (or (not (= a b))
    (and (g a) (not (g (+ (f b) c))))))
(check-sat)
```

Inside an SMT solver

Inside an SMT solver

SAT Solving

 ${\sf Many\ solvers:\ CaDiCal,\ Kissat,\ SAT4J,\ MiniSAT,\ Glucose,\ Crypto-MiniSAT\ \dots}$

Many uses:

for cryptography

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

- for cryptography
- for teaching

SAT Solving

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

- for cryptography
- for teaching
- for parallel computation

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

- for cryptography
- for teaching
- for parallel computation
- for cloud computation

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

- for cryptography
- for teaching
- for parallel computation
- for cloud computation
- for incremental computation

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

- for cryptography
- for teaching
- for parallel computation
- for cloud computation
- for incremental computation

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

- for cryptography
- for teaching
- for parallel computation
- for cloud computation
- for incremental computation

Interface standardization efforts:

• IPASIR, well-established

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

- for cryptography
- for teaching
- for parallel computation
- for cloud computation
- for incremental computation

Interface standardization efforts:

- IPASIR, well-established
- IPASIR-UP, new, designed for SMT

Many solvers: CaDiCal, Kissat, SAT4J, MiniSAT, Glucose, Crypto-MiniSAT . . .

Many uses:

- for cryptography
- for teaching
- for parallel computation
- for cloud computation
- for incremental computation

Interface standardization efforts:

- IPASIR, well-established
- IPASIR-UP, new, designed for SMT
- IPASIR-2, to come, independent from IPASIR-UP but synergies

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

cannot be handled by a SAT solver.

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \left[a \neq b \vee (q(a) \wedge \neg q(f(b) + c)) \right]$$

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

$$P \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

$$P \wedge Q \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

$$P \wedge Q \wedge R \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

$$P \wedge Q \wedge R \wedge [\neg S \vee (q(a) \wedge \neg q(f(b) + c))]$$

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

$$P \wedge Q \wedge R \wedge [\neg S \vee (T \wedge \neg q(f(b) + c))]$$

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

$$P \land Q \land R \land [\neg S \lor (T \land \neg U)]$$

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

cannot be handled by a SAT solver. It must be abstracted, e.g.,

$$P \land Q \land R \land [\neg S \lor (T \land \neg U)]$$

If the abstracted formula is UNSAT, so is the SMT formula.

An SMT formula, e.g., our running example

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [a \neq b \vee (q(a) \wedge \neg q(f(b) + c))]$$

cannot be handled by a SAT solver. It must be abstracted, e.g.,

$$P \land Q \land R \land [\neg S \lor (T \land \neg U)]$$

If the abstracted formula is UNSAT, so is the SMT formula.

Otherwise the SAT solver provides a model to the SMT solver, e.g.,

$$P \wedge Q \wedge R \wedge \neg S$$

First-order Theories

The most useful theories for verification include:

Equality:

Equality with uninterpreted symbols (EUF) congruence closure f(x) = y, g(a, b) = a

First-order Theories

The most useful theories for verification include:

Equality:

Equality with uninterpreted symbols (EUF) congruence closure f(x) = y, g(a, b) = a

Math:

linear arithmetic (real, integers) (LIA, LRA) mostly simplex x + 3y = 22 non-linear arithmetic CAD, Gröbner bases... $3x^2 + 2x - 8 = 0$

First-order Theories

The most useful theories for verification include:

Equality:

Equality with uninterpreted symbols (EUF) congruence closure f(x) = y, g(a, b) = a

Math:

linear arithmetic (real, integers) (LIA, LRA) mostly simplex x + 3y = 22 non-linear arithmetic CAD, Gröbner bases... $3x^2 + 2x - 8 = 0$

Data structures:

arrays uninterpreted symbols $\operatorname{read}(a,i) = b$ bitvectors bit-blasting $\operatorname{concat} bv_i \ bv_j = bv_m$ strings $\operatorname{SAT} + \operatorname{arithmetic}$ "a" · "bc" = "ab" · "c"

Theory solvers detect problematic assignments done by the SAT solver, e.g.,

Theory solvers detect problematic assignments done by the SAT solver, e.g., if the SAT solver found the model

$$P \wedge Q \wedge R \wedge \neg S$$

for our running example, it means

$$a \le b \land b \le a + c \land c = 0 \land a \ne b.$$

Theory solvers detect problematic assignments done by the SAT solver, e.g., if the SAT solver found the model

$$P \wedge Q \wedge R \wedge \neg S$$

for our running example, it means

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge a \neq b$$
.

Then an LIA solver finds that both a = b and $a \neq b$ must hold and returns false.

Theory solvers detect problematic assignments done by the SAT solver, e.g., if the SAT solver found the model

$$P \wedge Q \wedge R \wedge \neg S$$

for our running example, it means

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge a \neq b$$
.

Then an LIA solver finds that both a = b and $a \neq b$ must hold and returns false.

The formula $\neg P \lor \neg Q \lor \neg R \lor S$ is added to the abstracted formula before calling the SAT solver once more.

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

Both LIA and EUF are needed. How to combine them?

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b)$$
.

Both LIA and EUF are needed. How to combine them?

- LIA: $a \le b$, $b \le a + c$, c = 0
- EUF: $f(a) \neq f(b)$

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

Both LIA and EUF are needed. How to combine them?

- LIA: $a \le b$, $b \le a + c$, $c = 0 \implies b \le a$
- EUF: $f(a) \neq f(b)$

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

Both LIA and EUF are needed. How to combine them?

- LIA: $a \le b$, $b \le a + c$, $c = 0 \implies b \le a \implies a = b$
- EUF: $f(a) \neq f(b)$

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

Both LIA and EUF are needed. How to combine them?

- LIA: $a \le b$, $b \le a + c$, $c = 0 \implies b \le a \implies a = b$
- EUF: $f(a) \neq f(b)$

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

- LIA: $a \le b$, $b \le a + c$, $c = 0 \implies b \le a \implies a = b$
- EUF: $f(a) \neq f(b)$, a = b

If our example,

$$P \land Q \land R \land \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

- LIA: $a \le b$, $b \le a + c$, $c = 0 \implies b \le a \implies a = b$
- EUF: $f(a) \neq f(b)$, $a = b \implies a \neq b$

If our example,

$$P \wedge Q \wedge R \wedge \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

- LIA: $a \le b$, $b \le a + c$, $c = 0 \implies b \le a \implies a = b$
- EUF: $f(a) \neq f(b)$, $a = b \implies a \neq b \implies$ contradiction!

If our example,

$$P \land Q \land R \land \neg S$$

means in fact

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge f(a) \neq f(b).$$

Both LIA and EUF are needed. How to combine them?

By exchanging equations and disequations, e.g.,

- LIA: $a \le b$, $b \le a + c$, $c = 0 \implies b \le a \implies a = b$
- EUF: $f(a) \neq f(b)$, $a = b \implies a \neq b \implies$ contradiction!

Various techniques: Nelson-Open, Shostak, Gentleness, Politeness, . . .

Inside an SMT solver

Inside an SMT solver

Quantified Formulas in SMT (1/3)

Let us add to our improved running example,

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \big[f(a) \neq f(b) \vee (g(a) \wedge \neg g(f(b) + c)) \big]$$

the quantified formula

$$\forall x, y. (q(y) \Longrightarrow q(g(y) + x))$$

Quantified Formulas in SMT (1/3)

Let us add to our improved running example,

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge [f(a) \neq f(b) \vee (g(a) \wedge \neg g(f(b) + c))]$$

the quantified formula

$$\forall x, y. (q(y) \Longrightarrow q(g(y) + x))$$

First the ground SMT solver will be queried for a model

Inside an SMT solver

Quantified Formulas in SMT (2/3)

If our running example,

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \big[f(a) \neq f(b) \vee (q(a) \wedge \neg q(f(b) + c)) \big]$$

also includes the formula

$$\forall x, y. (q(y) \Longrightarrow q(g(y) + x))$$

First the ground SMT solver will be queried for a model

Quantified Formulas in SMT (2/3)

If our running example,

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \big[f(a) \neq f(b) \vee (q(a) \wedge \neg q(f(b) + c)) \big]$$

also includes the formula

$$\forall x, y. (q(y) \Longrightarrow q(g(y) + x))$$

First the ground SMT solver will be queried for a model, here

$$a \leq b, b \leq a+c, c=0, q(a), \neg q(f(b)+c)$$

Quantified Formulas in SMT (2/3)

If our running example,

$$a \leq b \wedge b \leq a + c \wedge c = 0 \wedge \big[f(a) \neq f(b) \vee (q(a) \wedge \neg q(f(b) + c)) \big]$$

also includes the formula

$$\forall x, y. (q(y) \Longrightarrow q(g(y) + x))$$

First the ground SMT solver will be queried for a model, here

$$a \leq b, b \leq a+c, c=0, q(a), \neg q(f(b)+c)$$

Then instances of the non-ground formulas will be produced based on this model and fed to the ground SMT solver.

Inside an SMT solver

Quantified Formulas in SMT (3/3)

for
$$a \le b \land b \le a + c \land c = 0 \land [f(a) \ne f(b) \lor (q(a) \land \neg q(f(b) + c))]$$

 $\forall x, y. (q(y) \Longrightarrow q(f(y) + x))$

given the model $a \le b, b \le a+c, c=0, q(a), \neg q(g(b)+c)$

Quantified Formulas in SMT (3/3)

for
$$a \le b \land b \le a + c \land c = 0 \land \big[f(a) \ne f(b) \lor (q(a) \land \neg q(f(b) + c)) \big]$$
$$\forall x, y. (q(y) \Longrightarrow q(f(y) + x))$$

given the model $a \le b, b \le a+c, c=0, q(a), \neg q(g(b)+c)$

The instance where $y \mapsto a$ and $x \mapsto f(b) - g(a)$, i.e.,

$$q(a) \Longrightarrow q(g(a) + f(b) - g(a))$$

Quantified Formulas in SMT (3/3)

for
$$a \le b \land b \le a + c \land c = 0 \land [f(a) \ne f(b) \lor (q(a) \land \neg q(f(b) + c))]$$

 $\forall x, y. (q(y) \Longrightarrow q(f(y) + x))$

given the model $a \le b, b \le a+c, c=0, q(a), \neg q(g(b)+c)$

The instance where $y \mapsto a$ and $x \mapsto f(b) - g(a)$, i.e.,

$$q(a) \Longrightarrow q(g(a) + f(b) - g(a))$$

leads to a contradiction at the ground level!

There is no panacea!

There is no panacea!

Instantiation techniques:

• trigger-based

There is no panacea!

Instantiation techniques:

• trigger-based

heuristic, to find unsat

There is no panacea!

Instantiation techniques:

• trigger-based

heuristic, to find unsat

• conflict-based

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat

There is no panacea!

Instantiation techniques:

• trigger-based heuristic, to find unsat

• conflict-based also heuristic, to find unsat, very efficient when it works

There is no panacea!

Instantiation techniques:

• trigger-based

• conflict-based

• model-based

heuristic, to find unsat

also heuristic, to find unsat, very efficient when it works

There is no panacea!

Instantiation techniques:

• trigger-based

conflict-based

model-based

heuristic, to find unsat

also heuristic, to find unsat, very efficient when it works

complete for decidable fragments, to find sat

There is no panacea!

Instantiation techniques:

- trigger-based
- conflict-based
- model-based
- enumerative

heuristic, to find unsat

also heuristic, to find unsat, very efficient when it works

complete for decidable fragments, to find sat

There is no panacea!

Instantiation techniques:

- trigger-based
- conflict-based
- model-based
- enumerative

heuristic, to find unsat

also heuristic, to find unsat, very efficient when it works

complete for decidable fragments, to find sat

complete for finitely populated types

Inside an SMT solver

SMT Solving in Higher-Order Logic

• functional variables y a = g a b

- functional variables y a = g a b
- ullet partially applied functions $g \ a = f$

- functional variables y a = g a b
- ullet partially applied functions $g \ a = f$
- lambda terms $\lambda y. y. a$

- functional variables y a = g a b
- ullet partially applied functions $g \ a = f$
- lambda terms $\lambda y. y. a$
- Booleans as terms λxy . $Py \vee x$

Higher-Order Logic is closer than First-Order Logic to:

• native language of proof assistants,

Higher-Order Logic is closer than First-Order Logic to:

- native language of proof assistants,
- theories like sets, streams, fixpoints, etc,

Higher-Order Logic is closer than First-Order Logic to:

- native language of proof assistants,
- theories like sets, streams, fixpoints, etc,
- functional code.

Higher-Order Logic is closer than First-Order Logic to:

- native language of proof assistants,
- theories like sets, streams, fixpoints, etc,
- functional code.

Higher-Order Logic is closer than First-Order Logic to:

- native language of proof assistants,
- theories like sets, streams, fixpoints, etc,
- functional code.

HOL encoded in first-order logic

Higher-Order Logic is closer than First-Order Logic to:

- native language of proof assistants,
- theories like sets, streams, fixpoints, etc,
- functional code.

 HOL encoded in first-order logic \equiv structure loss

Higher-Order Logic is closer than First-Order Logic to:

- native language of proof assistants,
- theories like sets, streams, fixpoints, etc,
- functional code.

HOL encoded in first-order logic \equiv structure loss \approxeq performance loss

Higher-Order Logic is closer than First-Order Logic to:

- native language of proof assistants,
- theories like sets, streams, fixpoints, etc,
- functional code.

HOL encoded in first-order logic \equiv structure loss \approxeq performance loss

To work in HOL, both Input language and solver must be adapted!

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

• functional variables, partial applications, lambda terms, Boolean terms

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

SMTlib 2.7: selected features (lambdas, functional variables). To appear soon!

Already available in cvc5 (in 2.6)

SMTlib is being entirely redesigned for higher-order (and beyond) in the v3, featuring

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

```
SMTlib 2.7: selected features (lambdas, functional variables).

Already available in cvc5 (in 2.6) with a minor setting change:
(set-logic QF_UFLRA)
(declare-const a Int)
(declare-fun g Int Int)
(declare-fun f (Int Int) Int)
(assert (forall ((x Int)) (= (g x) (f a x))))
(check-sat)
```

To appear soon!

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

```
SMTlib 2.7: selected features (lambdas, functional variables).

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic HO_QF_UFLRA)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)
```

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

```
SMTlib 2.7: selected features (lambdas, functional variables).

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic HO_ALL)

(declare-const a Int)

(declare-fun g Int Int)

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)
```

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

```
SMTlib 2.7: selected features (lambdas, functional variables).

Already available in cvc5 (in 2.6) with a minor setting change:

(set-logic HO_ALL)

(declare-const a Int)

(declare-const g (-> Int Int))

(declare-fun f (Int Int) Int)

(assert (forall ((x Int)) (= (g x) (f a x))))

(check-sat)
```

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

```
SMTlib 2.7: selected features (lambdas, functional variables).

Already available in cvc5 (in 2.6) with a minor setting change:
(set-logic HO_ALL)
(declare-const a Int)
(declare-const g (-> Int Int))
(declare-fun f (Int Int) Int)
(assert (= g (f a)))
(check-sat)
```

- functional variables, partial applications, lambda terms, Boolean terms
- dependent types

```
SMTlib 2.7: selected features (lambdas, functional variables).

Already available in cvc5 (in 2.6) with a minor setting change:
(set-logic HO_ALL)
(declare-const a Int)
(declare-const g (-> Int Int))
(declare-fun f (Int Int) Int)
(assert (= g (lambda ((x Int)) (f x a))))
(check-sat)
```

Two main approaches to HO-SMT:

FOL to HOL

 $\mathsf{HOL}\ \mathsf{to}\ \mathsf{FOL}$

Two main approaches to HO-SMT:

FOL to HOL datastructures lifting (heavy)

HOL to FOL

Two main approaches to HO-SMT:

FOL to HOL datastructures lifting (heavy)

HOL to FOL encodings (light)

Two main approaches to HO-SMT:

```
veriT (light) FOL to HOL datastructures lifting (heavy) HOL to FOL encodings (light)
```

Two main approaches to HO-SMT:

```
veriT (light) FOL to HOL datastructures lifting (heavy) cvc4/cvc5 (heavy) HOL to FOL encodings (light)
```

Two main approaches to HO-SMT:

```
veriT (light) FOL to HOL datastructures lifting (heavy) cvc4/cvc5 (heavy) HOL to FOL encodings (light)
```

Two main approaches to HO-SMT:

```
veriT (light) FOL to HOL datastructures lifting (heavy) cvc4/cvc5 (heavy) HOL to FOL encodings (light)
```

trigger-based	conflict-based	model-based	enumerative

Two main approaches to HO-SMT:

```
veriT (light) FOL to HOL datastructures lifting (heavy) cvc4/cvc5 (heavy) HOL to FOL encodings (light)
```

trigger-based	conflict-based	model-based	enumerative
0			

Two main approaches to HO-SMT:

```
veriT (light) FOL to HOL datastructures lifting (heavy) cvc4/cvc5 (heavy) HOL to FOL encodings (light)
```

trigger-based	conflict-based	model-based	enumerative
0			×

Two main approaches to HO-SMT:

```
veriT (light) FOL to HOL datastructures lifting (heavy) cvc4/cvc5 (heavy) HOL to FOL encodings (light)
```

trigger-based	conflict-based	model-based	enumerative
0		Ŏ	×

Two main approaches to HO-SMT:

```
veriT (light) FOL to HOL datastructures lifting (heavy) cvc4/cvc5 (heavy) HOL to FOL encodings (light)
```

trigger-based	conflict-based	model-based	enumerative
0	Ŏ	Ŏ	×

• Encode the problem as a propositional constraints.

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

Current status:

theory

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

- theory
- ☼ Isabelle/HOL verification

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

- theory
- pseudo-code

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

- theory
- ☼ Isabelle/HOL verification
- o pseudo-code
- o core implementation (encoding, call to SAT)

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

- theory
- ☼ Isabelle/HOL verification
- pseudo-code
- o core implementation (encoding, call to SAT)
- × full implementation (preprocessing, integration)

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

- theory
- ☼ Isabelle/HOL verification
- pseudo-code
- o core implementation (encoding, call to SAT)
- × full implementation (preprocessing, integration)

- Encode the problem as a propositional constraints.
- Apply SAT solving to find a model.
- If successful, build the instance from the model.

Current status:

- theory
- ☼ Isabelle/HOL verification
- pseudo-code
- o core implementation (encoding, call to SAT)
- × full implementation (preprocessing, integration)

We want a new HOSMT solver first!

No good research vessel:

• veriT: light but code rot

No good research vessel:

- veriT: light but code rot
- cvc5: heavy, very high entry cost

No good research vessel:

- veriT: light but code rot
- cvc5: heavy, very high entry cost

No good research vessel:

- veriT: light but code rot
- cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

No good research vessel:

- veriT: light but code rot
- cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

• Never sacrifice modularity for efficiency, to help research.

No good research vessel:

- veriT: light but code rot
- cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

- Never sacrifice modularity for efficiency, to help research.
- Gracefully lift first-order SMT to higher-order.

No good research vessel:

- veriT: light but code rot
- cvc5: heavy, very high entry cost

We will create ModulariT, a new SMT solver for research in FOL and HOL.

Principles:

- Never sacrifice modularity for efficiency, to help research.
- Gracefully lift first-order SMT to higher-order.
- Stay low level (C++) for efficiency and compatibility with other solvers (Z3, cvc5, bitwuzla, SPASS-SAT...)

SMT solving is going higher and faster!

• you can start playing with HOL in cvc5, but...

- you can start playing with HOL in cvc5, but...
- be patient for mature tools, or...

- you can start playing with HOL in cvc5, but...
- be patient for mature tools, or...
- try other higher-order tools

- you can start playing with HOL in cvc5, but...
- be patient for mature tools, or...
- try other higher-order tools

- you can start playing with HOL in cvc5, but...
- be patient for mature tools, or...
- try other higher-order tools (if you don't need arithmetic),

- you can start playing with HOL in cvc5, but...
- be patient for mature tools, or...
- try other higher-order tools (if you don't need arithmetic), e.g., Zipperposition, E, Vampire, Leo III, Lash...

- you can start playing with HOL in cvc5, but...
- be patient for mature tools, or...
- try other higher-order tools (if you don't need arithmetic),
 e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly
- if you have ideas of new applications for HOSMT, let me know!

- you can start playing with HOL in cvc5, but...
- be patient for mature tools, or...
- try other higher-order tools (if you don't need arithmetic),
 e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly
- if you have ideas of new applications for HOSMT, let me know!

SMT solving is going higher and faster!

- you can start playing with HOL in cvc5, but...
- be patient for mature tools, or...
- try other higher-order tools (if you don't need arithmetic),
 e.g., Zipperposition, E, Vampire, Leo III, Lash... and most importantly
- if you have ideas of new applications for HOSMT, let me know!

Looking forward to (future) HOSMT users!