Decentralized Runtime Verification

Building Blocks: Components, Observations, Specification and Monitors [1, 4]

A decentralized system contains multiple components.

Monitoring API

An API for Common Monitoring Activities

&

Parsing and managing specifications

Simple and Extensible Formats

THEMIS uses XML for specifications.
Specifications are passed to your algorithm.
Your algorithm is responsible of parsing and setting up the

° .
. . and traces. Datastructures for storin : :
° * Components behavior is abstracted as observations. N) g monitors appropriately.
X . observations and monitor state.
> o The observation <alarm, true> indicates <specifications>
. that the alarm is triggered.)))) <specification id="monitor" class="uga.corse.themis.monitoring.SpecLTL">
99 Creating, accessing and instrumenting <setLTL><! [CDATAL[] ((m<->X(1)))]1></setLTL>
e cation i : - measures into the execution. </specification>
A specification is a user-provided formal description of the <specification id="r1" class="uga.corse.themis.lights.specs.SpecRoom">
correct behavior of the system. It is used to synthesize and o F— " ::ggg:x;::z:;:z:g::z::
. X . eploying and setting up components
G(lalarm) integrate monitors into the system. N A ploy g g 1P P 4 e g
; monitors, and associating monitors to <specification id="r2" class="uga.corse.themis.lights.specs.SpecRoon">

Specifications can be defined using automata,

<addDevice>c</addDevice>

4 specifications.

<addDevice>d</addDevice>
</specification>
<!-- Connect: = : both ways, l-r :
<specification id="network"
class="uga.corse. themis. lights.specs.SpecConnectivity">
<connect>rl=r2</connect>
<connect>rl=r3</connect>
</specification>
</specifications>

Linear-time Temporal Logic (LTL), or other formalisms.

one way 1 -> r -->

Specifying high level API for monitoring

Monitors are responsible for checking whether the current 51 =)
and communication between monitors.

execution of the system complies with the specification.
One or more monitors are attached to components.
Monitors receive observations, do some processing and
communicate with other monitors

@

1. Design | Decentralized RV Algorithms
Design new algorithms

Variants of existing algorithms
Refinements of existing algorithms

0id setupRun(MonitoringAlgorithm alg) {
addHeasure (
new Measure(*msg_nun’, “Msgs" , 0L Measures.addLong)) ;

¥
after(Integer to, Message m) : Commons.sendMessage(to, m) {
update("nsg_nun" , 1L)

Measures

Create measures by instrumentation (Aspect.
Use existing API for measures

Measures target all algorithms using the API

»id monitor(int t, Memory<Atom» observations)
ReportVerdict, ExceptionStopMonitoring {
men. merge (observations) ;
if(receive()) isMonitoring = true
if(isMonitoring) {
if (1observations. isEmpty())
ehe. tick();
boolean b = ehe.update(mem, -1);
if(b) {
VerdictTimed v = ehe.scanVerdict()
if(v.isFinal())
W ReportVerdict (v.getVerdict(), t)
ehe.dropResolved() ;

Map<Integer, ? ex s Monitor> setup() {
config.getSpec().put("root”,
Convert.makeAutonataSpec(
config.getspec() .get (" ro
Map<Integer, Monitor> mons
Integer i = 0;
for(Component comp : config.getComponents()) {
MonMigrate mon MonMigrate(i)
if(next etId()) { attachMonitor(comp, mon)
Representation tosend = ehe.slicelive(); mons.put (1, mon);
send(next, new RepresentationPacket (toSend)); i+
isMonitoring = f

N
new HashMap<>() ;

int next = getNext()

return mons;

Simulation
Monitor a trace using an algorithm

Execute

—e

Visualization
Basic topology and communication
visualization

Experiment
An experiment is a reproducible set
of parameters, specifications, and

THEMIS agorims
A Tool for Decentralized Monitoring e

Experiment Configuration

a. corse. themis. tools. experiment . TestLTL
traces

enerate=false

component

Antoine El-Hokayemi Ylies Falcone

first.last @ univ-grenoble-alpes.fr
Univ. Grenoble Alpes, LIG, Inria, CNRS, F-38000 Grenoble, France

3. Analyze | Flexible
Measures are stored in a database
Use any third party tools for analysis
SELECT alg, comps, avg(msg num), avg(msg data), count(*)

FROM bench WHERE alg in (‘Migration’, ‘MigrationRR')
GROUP BY alg, comps

Modular
Instrumented at runtime using AspectJ

Existing APl and classes to extend alg
1 Migration |3

count(*)
572600

comps_avg(msg_num) | avg(msg_data)
2.04226336011177 267.8458714635

Reusable 2 Migration |4 2.16402472527473 668.120401098901 364000

Measures apply to different algorithms
Experiments can re-use new measures

3|Migration 5 3.33806822465134 3954,09705050886 530600

4| MigrationRR 3 32.7222301781348 482.572275585051 572600
5| MigrationRR 4 31.8533351648352 932.708425824176 364000

6 MigrationRR 5 19.2345269506219 4361.30746324915 530600

Average Maximum Delay

THEMIS

Designing, Analyzing, and Comparing
Decentralized RV Algorithms

References

[1] Christian Colombo and Ylies Falcone. 2016. Organising LTL
monitors over distributed systems with a global clock. Formal
Methods in System Design 49, 1-2 (2016), 109-158.

THEMIS is a tool to facilitate the design, #Cor;;;"ems
development, and analysis of decentralized

monitoring algorithms. It is developed using
Java and AspectJ.

Algorithm =e~ Choreography == Migration =+ MigrationRR =+ Orchestration
[2] Antoine El-Hokayem and Yliés Falcone. 2017. Monitoring
Decentralized Specifications. In 26th International

Symposium on Software Testing and Analysis, ISSTA 2017

Use Cases
It consists of a library and command-line
tools. THEMIS provides an API, data
structures and measures for decentralized
monitoring.

Designing New Algorithms
THEMIS makes it easy to prototype and incrementally design new algorithms. Common
tasks such as parsing automata and LTL, setting up monitors, and communication are
managed by the framework.

[3] Andreas Bauer and Yliés Falcone. 2016. Decentralised LTL
monitoring. Formal Methods in System Design
48,12 (2016), 46-93

[4] Martin Leucker and Christian Schallhart. 2009. A brief
account of runtime verification. J. Log. Algebr. Program.78, 5
(2009), 293-303.

These building blocks can be reused or
extended to modify existing algorithms,
design new more intricate algorithms, and
elaborate new approaches to assess existing
algorithms.

Optimizing Existing Algorithms
Using the experiment tool and the existing measures, designing new variants of algorithms
can be easily re-run in a reproducible environment. New measures can be added to enrich

the comparison, which will also apply to the older versions.
gitlab.inria.fr/monitoring/themis

&zua,-

Comparing Decentralized RV Algorithms
The monitoring APl can be used to compare different algorithms [3]. This is done by
analyzing the usage of the same datastructures or API calls (such as communication).

UNIVERSITE
v Grenoble |
2 Alpes LI G

The theoretical aspects can be found in [2].

The poster s available under the Creative Commons Attribution-ShareAlike 3.0 Unported License.

Poster template by Ugo Sangiorgi based on Felix Breuer's work

