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Automates : historique
• 1936 : Alan Turing†

• On Computable Numbers, with an Applica7on to the 
Entscheidungsproblem
Proceedings of the London Mathema3cal Society

• 1943 : Warren McCulloch†, Walter Pi<s†
• A logical calculus of the ideas immanent in nervous ac7vity

Bulle3n of Mathema3cal Biophysics

• 1951 : Stephen C. Kleene†
• Representa7on of events in nerve nets and finite automata

U.S. Air Force Project Rand Research Memorandum

• 1955 : George H. Mealy†
• A method for synthesising sequen7al circuits

Bell System Technical Journal.

• 1956 : Edward F. Moore†
• Gedanken-experiments on sequenOal machines

Annals of Mathema3cs Studies

• 1959 : Michael O. Rabin, Dana S. Sco<
• Finite Automata and Their Decision Problems

IBM Journal

1936.] ON COMPUTABLE NUMBERS. 233

Circular and circle-free machines.

If a computing machine never writes down more than a finite number
of symbols of the first kind, it will be called circular. Otherwise it is said to
be circle-free.

A machine will be circular if it reaches a configuration from which there
is no possible move, or if it goes on moving, and possibly printing symbols
of the second kind, but cannot print any more symbols of the first kind.
The significance of the term "circular" will be explained in §8.

Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free
machine. A number is computable if it differs by an integer from the
number computed by a circle-free machine.

We shall avoid confusion by speaking more often of computable
sequences than of computable numbers.

3. Examples of computing machines.

I. A machine can be constructed to compute the sequence 010101....
The machine is to have the four m-configurations " b " , " c " , "£" , "c:>

and is capable of printing " 0 " and " 1 ". The behaviour of the machine is
described in the following table in which " R " means "the machine moves
so that it scans the square immediately on the right of the one it was
scanning previously". Similarly for "L". "E" means "the scanned
symbol is erased" and " P " stands for "prints". This table (and all
succeeding tables of the same kind) is to be understood to mean that for
a configuration described in the first two columns the operations in the
third column are carried out successively, and the machine then goes over
into the m-configuration described in the last column. When the second
column is left blank, it is understood that the behaviour of the third and
fourth columns applies for any symbol and for no symbol. The machine
starts in the m-configuration b with a blank tape.
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Figure 1. The neuron ci is always marked with the numeral i upon the body of the 
cell, and the corresponding action is denoted by “N” with is subscript, as in the text: 

(a) N*(t) .=.N,(t- 1); 
(b) N,(t).s.N,(t-l)vN,(t-1); 

(c) N3(t).s.N1(t-1).N2(t-1); 

(d) N3(t).= N,(t-l).-N,(t-1); 

(e) N,(t):=:N,(t-l).v.N,(t-3).-N,(t-2); 
N&).=.N2(t-2).N2(t-1); 

(f) N4(t):3: --N,(t-l).N,(t-l)vN,(t-l).v.N,(t-1). 
N,(t-l).N,(t-1) 
NJt):=: -N,(t-2).N,(t-2)vN,(t-2).v.N,(t-2). 
N,(t-2).N,(t-2); 

(g) N,(t).=.NN,(t-2).-N,(t-3); 
(h) N,(t).=.N,(t-l).N,(t-2); 
(i) N,(t):=:Nz(t-l).v.N,(t-l).(Ex)t-1 .N,(x).N,(x). 
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1987 : Statecharts – David Harel

Statecharts: a visual formalism
for complex systems
Science of Computer Programming

3

246 D. Hare1 

Figure 25 contains a refinement of the stopwatch display state of Figs. 9 and 13 
using orthogonality, and should be self-explanatory. In it, regular and lap are two 
kinds of displays and zero is the special state in which the stopwatch is off but in 
its initial position. This description could have been the outcome of a separate 
person or group dedicated to specifying the behavior of the stopwatch. 
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Fig. 25. 

Orthogonality appears in the Citizen watch on the high levels too. One might 
start a top-down behavioral specification of the watch, accounting for battery 
insertion and removal, as in Fig. 26, and then decide (see Fig. 27) that the alioe 
state is to consist of six orthogonal components: a main component containing 
displays and alarm-beep modes, one component for the enabled/disabled status of 
each of the alarms and the chime (the latter containing the chime-beeping state 
too), one for the power status, and one for the light. The resulting levels of the 
statechart are given in Fig. 28, where the main component of the alioe state has 
been described in detail earlier. 

Citizen quartz multi-alarm III 

batt. inserted 

Fig. 26. 



Automate : gérer un livre d’une bibliothèque

0 1 2

Emprunter

RetournerSupprimer

Créer

Renouveler
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Automate : gérer 2 livres d’une bibliothèque

5

00 10 20
Emprunter(b1)

Retourner(b1)Supprimer(b1)

Créer(b1) Renouveler(b1)

01 11 21
Emprunter(b1)

Retourner(b1)Supprimer(b1)

Créer(b1) Renouveler(b1)

02 12 22
Emprunter(b1)

Retourner(b1)Supprimer(b1)

Créer(b1) Renouveler(b1)

Créer(b2)

Emprunter(b2)

Retourner(b2)

Supprimer(b2)

Renouveler(b2)

Emprunter(b2)

Retourner(b2)

Créer(b2)
Supprimer(b2)

Renouveler(b2)

Créer(b2)

Emprunter(b2)

Retourner(b2)

Supprimer(b2)

Renouveler(b2)

Produit
d’automate

(aussi appelé
entrelacement)



Statecharts

• AND state

=

produit d’automate

=

entrelacement
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Statecharts : gérer 2 livres

0 1 2

Emprunter(b1)

Retourner(b1)Supprimer(b1)

Créer(b1)

Renouveler(b1)

0 1 2

Emprunter(b2)

Retourner(b2)Supprimer(b2)

Créer(b2)

Renouveler(b2)
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Statecharts : gérer n livres

• Parameterized states
mentionnées dans SCP 1987 
comme une extension possible
• À  ma connaissance
• Pas supportée par UML
• Pas supportée par les outils
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Algèbre de processus (AP)

• Algèbre de processus
• CSP : 1978 : C. A. R. (Tony) Hoare 

Communicating sequential processes
Communications of the ACM
• CCS : 1978 : Robin Milner †

Algebras for communicating systems
1er Colloque AFCET-SMF de 
mathématiques appliquées (Palaiseau -
Paris)
• SOS : 1980 : Gordon Plotkin

An operational semantics for CSP
Workshop on Logic of Programs
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CSP – Quelques opérateurs (Hoare, Roscoe)

• SKIP processus qui termine normalement
• STOP processus qui ne fait rien (deadlock)
• a ➔ E préfixe : exécute l’acAon a suivi du processus E
• E1 ◻ E2 choix externe entre E1 et E2
• E1 ; E2 composiAon séquenAelle : exécuAon de E1 suivie de E2
• E1 ⫴ E2 entrelacement de E1 et E2
• E1  ⃦ E2 synchronisaAon de E1 et E2 sur les acAons communes
• E1 |X| E2 synchronisaAon de E1 et E2 sur les acAons de X

• E1 ⫴ E2 = E1 |∅| E2
• E1  ⃦ E2 = E1 | #(E1) ∩ #(E1) | E2

• C & E garde : exécute E si la condiAon C est vraie
• ⫴ x : T : E entrelacement quanAfié sur les valeurs de x dans T
• ◻x : T : E choix externe quanAfié sur les valeurs de x dans T

10



ASTD = Statecharts + AP
• Algebraic State-Transi1on Diagram (ASTD)
• Composer des Statecharts avec les opérateurs d’une AP
• ASTD élémentaire = Statecharts

• État complexe = ASTD
• E1 | E2 choix externe entre E1 et E2
• E1 ⇒ E2 composi1on séquen1elle : exécu1on de E1 suivie de E2
• E * fermeture de Kleene (itéra1on arbitraire sur E)
• E1 ⫴ E2 entrelacement de E1 et E2
• E1  ⃦ E2 synchronisa1on de E1 et E2 sur les ac1ons communes
• E1 |X| E2 synchronisa1on de E1 et E2 sur les ac1ons de X
• C ⇒ E garde : exécute E si la condi1on C est vraie
• ⫴ x : T : E entrelacement quan1fié sur les valeurs de x dans T
• |x : T : E choix externe quan1fié sur les valeurs de x dans T

11



ASTD : gérer 2 livres d’une bibliothèque
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0 1 2

Emprunter(b1)

Retourner(b1)Supprimer(b1)

Créer(b1)

Renouveler(b1)

0 1 2
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Retourner(b2)Supprimer(b2)

Créer(b2)

Renouveler(b2)
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ASTD : Gérer n livres

13

0 1 2

Emprunter(x)

Retourner(x)Supprimer(x)

Créer(x)

Renouveler(x)

⫴ x : LIVRE

⫴ x : T : A    Entrelacement d’instances de A indexée par x
Autant d’instances que de valeurs dans T

Variable quanFfiée



⫴ x : LIVRE
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0 1 2
Emprunter(b1)

Retourner(b1)Supprimer(b1)

Créer(b1) Renouveler(b1)

0 1 2
Emprunter(b2)

Retourner(b2)Supprimer(b2)

Créer(b2) Renouveler(b2)

0 1 2
Emprunter(b3)

Retourner(b3)Supprimer(b3)

Créer(b3) Renouveler(b3)

…

⫴

x := b1

x := b2

x := b3

…

0 1 2

Emprunter(x)

Retourner(x)Supprimer(x)

Créer(x) Renouveler(x)



Statecharts : gérer un membre et un livre
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0 1 2

Emprunter

RetournerSupLivre

CréerLivre

Renouveler

0 1 2

Emprunter

RetournerSupMembre

CréerMembre
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ASTD : Gérer 1 membre et 1 livre  
Synchronisation
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0 1 2
SupLivre

CréerLivre Emprunter

Retourner
Renouveler

0 1 2
SupMembre

CréerMembre Emprunter

Retourner
Renouveler

⃦
Livre

Membre
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0 1 2
SupLivre

CréerLivre Emprunter

Retourner
Renouveler

0 1 2
SupMembre

CréerMembre Emprunter

Retourner
Renouveler

⃦
Livre

Membre



ASTD : Sémantique de la synchronisation
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Renouveler

Emprunter

Entrelacement sur 
ac<ons propres
• Créer(Livre/Membre)
• Sup(Livre/Membre)
Produit synchrone sur 
ac<ons communes
• Emprunter
• Renouveler
• Retourner

0 1 2
SupLivre

CréerLivre Emprunter

Retourner
Renouveler

0 1 2
SupMembre

CréerMembre Emprunter

Retourner
Renouveler

⃦
Livre

Membre



ASTD : Gérer n1 membres et n2 livres
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⃦

Membre(m)

⫴ m : MEMBRE

Livre(b)

⫴ b : LIVRE

Appels d’un autre ASTD



ASTD Membre

20

Membre(m:MEMBRE)

Prêt(b,m)

⫴ b : LIVRE

0

SupMembre(m)

CréerMembre(m)

L’état source doit être dans un état 
final pour déclencher cette transition

État complexe de l’automate Membre



ASTD Prêt
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2
Emprunter(b,m)

Retourner(b)
Renouveler(b)

Prêt(b : LIVRE, m : MEMBRE)
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Membre
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Membre(m:MEMBRE)

⫴ b : LIVRE

0

SupMembre(m)

CréerMembre(m)

2
Emprunter(b,m)

Retourner(b)
Renouveler(b)11

État final du sous-automate
État complexe de Membre est  final 
quand toutes les instances
de (⫴ b : LIVRE) sont finales



Livre
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Livre(b : LIVRE)

Prêt(b,m)

| m : MEMBRE

0

SupLivre(b)

CréerLivre(b)



Patron de conception : UML 2 ASTD

24

prêt
Livre * Membre

1

⫴ b : LIVRE : Livre(b)
⃦
⫴ m : MEMBRE : Membre(m)

Livre(b:LIVRE) =
aut(|m : MEMBRE : Prêt(b,m))

Membre(m:MEMBRE) =
aut(⫴ b : LIVRE : Prêt(b,m)) 



Patron de conception : UML 2 ASTD
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A
E1 * E2

1

⫴ e1 : E! : E1(e1)
⃦
⫴ e2 : E2 : E2(e2)

E1(e1 : E!) =
aut(|e2 : E2 : A(e1,e2))

E2(e2:E2) =
aut(⫴ e1 : E1 : A(e1,e2)) 



Patron de conception : UML 2 ASTD
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A
E1 * E2

*

⫴ e1 : E! : E1(e1)
⃦
⫴ e2 : E2 : E2(e2)

E1(e1 : E!) =
aut(⫴ e2 : E2 : A(e1,e2))

E2(e2:E2) =
aut(⫴ e1 : E1 : A(e1,e2)) 



Patron de conception : UML 2 ASTD
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A1
E1 k1 E2

k2

E1(e1 : E1) =
aut(

k2 e2 : E2 : A1(e1,e2)
⃦

k4 e2 : E2 : A2(e1,e2))

E2(e2 : E2) =
aut(

k1 e1 : E1 : A1(e1,e2)
⃦

k3 e1 : E1 : A2(e1,e2))

A2k3 k4



Sémantique opérationnelle des ASTD
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a1(x : int), aut

e1(x)

3

6

5

7

e2

e3

2 H

e5

e6

e7

1

e10

4, aut

e9[x>1]
e8

e4

0

Figure 1. An automaton including another automaton

3.1 Elementary ASTD

An elementary ASTD is used to define elementary states of an automaton ASTD. Formally, let ASTDElem �
= helemi be

the set of ASTD elem. The type of an ASTD elem state is helem�i. The initial and final states are as follows.

init((elem))
�
= (elem�)

final((elem�))
�
= true

3.2 Automaton

An Example. An ASTD automaton is very similar to a traditional automaton, except that its states can be of any ASTD
type, and that its transition function can refer to substates of automaton states, as in statecharts. Figure 1 provides a graphical
representation of an example automaton named a1. It includes a sub-automaton 4. The outer box delineates the definition
of a1. The tab of this box starts with the name of the automaton, with its parameter, x, of type int (integer). The name in
the tab can be omitted. The keyword aut denotes that a1 is an ASTD of type Automaton. The initial state of an automaton
is depicted by >e. For a1, the initial state is 0, which is an elementary state (denoted by e). An initial state could also be of
any ASTD type; there are no restriction. Transitions are labeled in the statecharts style by e(~x)[�], where e(~x) is an event
with parameters ~x and � is a guard which must hold for the transition to trigger. Note that the statechart notion of action is
not used in this version of ASTD; however, it could be easily added, together with state variables. The event is mandatory
on a transition and the guard is optional. A transition fires when an event is received from the environment and there exists
a transition for that event in the current state of the automaton. If there is no transition in the current state for that event,
it is ignored and discarded. In the context of IS, a meaningful error message should be provided to the environment (e.g.,
the user) when an event is discarded, Otherwise, the behavior of an automaton is essentially the same as the behavior of an
OR-state in statecharts.

The states of an automaton are of type haut�, n, h, si where

• n 2 Name denotes the name of the state.
• h 2 Name 7! State is a partial function that denotes the last visited substate of an automaton; it is used to implement

the notion of history state introduced in statecharts.
• s 2 State is the current state of the automaton. It can be a compound state, denoted by type State, or an elementary

state, denoted by elem.

Suppose that a1 is instantiated with value x := 2. It is then in the initial state 0. The reception of the event e1(2) triggers
a transition from 0 to state 4, which is a complex state given by an automaton. This puts 4 in its initial state 5. We denote this
transition by

(aut�, 0, h, elem�)
e1(2)���!a1 (aut�, 4, h0

, (aut�, 5, h00
, elem�))

4



Sémantique opérationnelle des ASTD

• Init : ASTD ⟶ State
• Donne l’état initial d’un ASTD

• Final : State ⟶ BOOL
• Détermine si un état est final

29

Figure 1. An automaton including another automaton

3.1 Elementary ASTD

An elementary ASTD is used to define elementary states of an automaton ASTD. Formally, let ASTDElem �
= helemi be

the set of ASTD elem. The type of an ASTD elem state is helem�i. The initial and final states are as follows.

init((elem))
�
= (elem�)

final((elem�))
�
= true

3.2 Automaton

An Example. An ASTD automaton is very similar to a traditional automaton, except that its states can be of any ASTD
type, and that its transition function can refer to substates of automaton states, as in statecharts. Figure 1 provides a graphical
representation of an example automaton named a1. It includes a sub-automaton 4. The outer box delineates the definition
of a1. The tab of this box starts with the name of the automaton, with its parameter, x, of type int (integer). The name in
the tab can be omitted. The keyword aut denotes that a1 is an ASTD of type Automaton. The initial state of an automaton
is depicted by >e. For a1, the initial state is 0, which is an elementary state (denoted by e). An initial state could also be of
any ASTD type; there are no restriction. Transitions are labeled in the statecharts style by e(~x)[�], where e(~x) is an event
with parameters ~x and � is a guard which must hold for the transition to trigger. Note that the statechart notion of action is
not used in this version of ASTD; however, it could be easily added, together with state variables. The event is mandatory
on a transition and the guard is optional. A transition fires when an event is received from the environment and there exists
a transition for that event in the current state of the automaton. If there is no transition in the current state for that event,
it is ignored and discarded. In the context of IS, a meaningful error message should be provided to the environment (e.g.,
the user) when an event is discarded, Otherwise, the behavior of an automaton is essentially the same as the behavior of an
OR-state in statecharts.

The states of an automaton are of type haut�, n, h, si where

• n 2 Name denotes the name of the state.
• h 2 Name 7! State is a partial function that denotes the last visited substate of an automaton; it is used to implement

the notion of history state introduced in statecharts.
• s 2 State is the current state of the automaton. It can be a compound state, denoted by type State, or an elementary

state, denoted by elem.

Suppose that a1 is instantiated with value x := 2. It is then in the initial state 0. The reception of the event e1(2) triggers
a transition from 0 to state 4, which is a complex state given by an automaton. This puts 4 in its initial state 5. We denote this
transition by

(aut�, 0, h, elem�)
e1(2)���!a1 (aut�, 4, h0

, (aut�, 5, h00
, elem�))
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Figure 11. A closure over a quantified choice ASTD
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We use the abbreviation k �
= |[]| with � = ↵(l) \ ↵(r), where ↵(a) denotes the labels of event appearing in ASTD a,

including all its inner ASTDs. It is the parallel composition operator of CSP, which means that the ASTDs synchronize on
common events. We also use 9 �

= |[{}]| with � = {}, which is the interleave operator of CSP.

3.7 Quantified choice

This operator and the next one (quantified synchronization) are not usual operators in state diagrams. They have been
introduced to take into account IS specificities, like managing sets of entity type instances. The quantified choice is very
similar to an existential quantification in first-order logic. It allows to pick a value from a set and execute a component ASTD
with that value. The scope of the quantified variable is the component ASTD. Figure 11 illustrates a closure over a choice
quantification of an automaton. ASTD a iterates on the choice. At each iteration, a new value for x is chosen. The choice
quantification is represented by | x : {4, 5, 6}.

The type of a quantification choice state is h|:�, [? | v], [? | s]i where ? is a constant indicating that the choice hasn’t
been made yet, and v 2 Term denotes the current value of the choice quantified variable when the choice has been made.

The following is a possible sequence of transitions for the ASTD of Figure 11.

(?�, false, (|:�,?, (aut�, 1, , elem�)))
e1(5)���!c (?�, true, (|:�, 5, (aut�, 2, , elem�)))
e2(5)���!c (?�, true, (|:�, 5, (aut�, 3, , elem�)))
e1(4)���!c (?�, true, (|:�, 4, (aut�, 2, , elem�)))

(TR1)

In the initial state, special value ? is used to indicate that the quantified variable hasn’t been instantiated yet. The quantified
choice ASTD can accept e1(4), e1(5) and e1(6). When event e1(5) is received, the only value of x for which the quantified
choice can accept e1(5) is x = 5. This value is recorded in the |:� state. The iteration can complete only by accepting event
e2(5). In the next iteration, a new value of x can be chosen. Again, e1(4), e1(5) and e1(6) can be accepted. When e1(4) is
received, x is bound to 4 and a new iteration can start.

Here is the semantics. Let QChoice �
= h|:, n, x, T, bi be the set of quantified choice ASTDs, where x 2 Var denotes a

quantification variable, T is a type and b 2 ASTD is the quantified ASTD. Initial and final states are defined as follows.

init((|:, n, x, T, b)) �
= (|:�,?,?)

final((|:�,?,?))
�
= 9x : T · final(init(b))

v 6= ? ) (final((|:�, v, s)) �
= final(s)[x := v])

This is the first type of ASTD where we need the notion of environment, to manage the quantification. When a transition
is computed using the inference rules, the value bound to the quantification variable is added to the execution environment
(the one appearing on the transition arrow) and can be used to make the proof, in particular to check that the event received
� matches the transition event �0, after the environment has been applied as a substitution. This behavior is expressed by the
following two inference rules.

13

orders, ||| x : int

items, |[{ invoiceOrder,cancelInvoice }]| y : int

3, aut

order, aut

1

item, aut

create
Order(x)

7
5 6

invoice
Order(x)

create
Item(x,y)

delete
Item(x,y) cancel

Invoice(x)

delete
Order(x)

H4

Figure 13. Invoicing of orders using a double synchronization quantification

of order x are synchronized and move to state 5 (which means invoiced). If the invoice is cancelled, each item of the order
goes back to its previous state, thanks to the history state. An order can be deleted at any time.
Formal Definition and Semantics. Let QSynchronization �

= h|[]|:, n, x, T,�, bi be the set of quantified synchronization
ASTDs, where � ✓ Label denotes a synchronization set of event labels and b 2 ASTD is the quantified synchronized ASTD.
The state of a quantified synchronization is of type h|[]|:�, fi where f 2 T ! State is a function which associate a state to
each value of T . Initial and final states are defined as follows.

init((|[]|:, n, x, T,�, b))
�
= (|[]|:�, T ⇥ {init(b)})

final((|[]|:�, f)) �
= 8 v : T · final(f(v))

There are two inference rules: |[]|:1 deals with events requiring no synchronization, while |[]|:2 deals with the ones that
do.

↵(�) 62 � f(v)
�,([x:=v])2���������!

b

s

0
|[]|:1

(|[]|:�, f)
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3.9 Guard

A guard ASTD guards the execution of its component ASTD using a predicate. The first event received must satisfy the
guard predicate. Once the guard has been satisfied by the first event, the component ASTD execute the subsequent events
without further constraints from its enclosing guard ASTD. The predicate may refer to variables whose scope include the
guard; in the context of IS specification, the guard could also refer to attributes of entities and associations, similarly to guards
in process expressions of the EB3 method [13].

The guard ASTD is a generalization of the guard specified on an automaton transition. It is especially useful when the
component ASTD is a complex structure, avoiding the duplication of the guard predicate on all the possible first transitions
of that structure.
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predicate x > 0[([x := v])], which reduces to v > 0 after applying the substitution, must hold for the event to be accepted;
otherwise, it is rejected and ignored by the ASTD. If , event e1(v) is accepted, e2(v) can be accepted to terminate the first
iteration of the closure. A new iteration can then start, and the new value v

0 for x must again satisfy x > 0. Figure 15
provides another example of a guard ASTD named c, which is included in the scope of a closure ASTD b, itself included in a
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Figure 9. A synchronization ASTD including two automata

Figure 10. A coalesced version of the ASTD of Figure 9
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of concision.
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e5�!c (|[]|�, (aut�, 4, , elem�), (aut�, 8, , elem�))

When an ASTD based on a binary operator like |[�]| includes an automaton component or a unary operator ASTD, we
can also coalesce the component ASTD with its enclosing box from the binary operator. Figure 10 illustrates a coalesced
version of the ASTD of Figure 9.
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There are three inference rules. Rules |[]|1 and |[]|2 respectively describe execution of events with no synchronization
required on the LHS and the RHS of the synchronization ASTD. Rule |[]|3 describe the synchronization between the LHS
and the RHS.
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2 Conventions and Definitions

The pointwise extension of a function f 2 S 7! T is the application of f to a set S0 ✓ S. It is noted f [S0] and defined as
follows

f [S0]
�
= {f(s) | s 2 S

0}

Let T1, . . . , Tn

be types. A type A defined as a Cartesian product is noted A

�
= hc1, . . . , cni where c1 2 T1, . . . , cn 2 T

n

,
which is usually represented as A = T1 ⇥ . . .⇥ T

n

in the literature. Given an element a 2 A, we write a.c

i

to denote the i

th

coordinate of tuple a.
A sum is noted B = hcons1, A1i | . . . | hconsm, A

m

i, where each A

i

is a (possibly empty) Cartesian product. Symbol
cons

i

denotes a sum tag (also called a constructor). Given an element b 2 B, we write b = (cons
i

, c

i1 , . . . , cin) to determine
its sum subtype and to access its coordinates c

ij . Parentheses “(” and “)” and brackets “[” and “]” may be used to determine
precedence. By abuse of notation and for the sake of concision, we sometimes omit a coordinate name in a Cartesian product
and directly use a sum type, when the sum type is more convenient. For example (. . . , [? | >], . . .) is a shorthand for
(. . . , c1, . . .) where c1 2 {?,>}..

We use the following basic types. Boolean denotes the set {true, false}. Name denotes the set of state names. It includes
two special elements, noted H and H*, which respectively denote the shallow history state and the deep history state of
statecharts [15]. Term denotes the set of terms constructed using types supported by the ASTD specification language. It is
left undefined at this point, but it should include classical specification types like Boolean, integer, string, relations, functions,
sequences, Cartesian product, sum, etc. Var denotes the set of variables. Event denotes the set of events that the system
accepts. An event is noted l(v1, . . . , vn) where l is called the event label, and v

i

2 Term are event parameters. Function ↵

extracts the label of an event: ↵(l(v1, . . . , vn)) = l. Label denotes the set of event labels. Predicate denotes the set of first
order predicates. Env denotes the set of environments. An environment is a function which maps a variable to a value; hence
it is a set of pairs x

i

, v

i

, with x

i

2 Var and v

i

2 Term. For convenience, an environment is noted ([x1, . . . , xn

:= v1 . . . , vn]),
or, more concisely, ([~x := ~v]). An empty environment is noted ([]).

An environment � can be used in a substitution. The expression u[([~x := ~v])] denotes the simultaneous substitution of
x1, . . . , xn

by v1, . . . , vn in expression u, which can be a predicate or a term. The symbol 2 is a composition operator on
environments such that u[�12�2] = (u[�1])[�2]. Note that �1 has precedence over �2 when �12�2 is used in a substitution.

3 ASTD

We denote by ASTD the type of all ASTDs. It includes the following subtypes: Automaton, Sequence, Guard, Closure,
Choice, Synchronization, QChoice, QSynchronization, ASTDCall, ASTDElem. We shall describe each of them in the sequel.
But first, we need to define some auxiliary notations.

ASTD subtypes share common concepts. Each a 2 ASTD has a set of states a.S ✓ State. It is inductively defined. Some
elements of S are said to be final: they enable subsequent work to start. Final states of an ASTD a are determined by a
function final of type State ! Boolean. Function init of type ASTD ! State returns the initial state of an ASTD. A state is
either elementary or compound (another ASTD).

The semantics of ASTDs is defined in an operational style. It consists of a labeled transition system, which is a subset of
State⇥ Event⇥ State and is inductively defined by inference rules. Elements of this relation are called transitions and noted
s

��!a s

0, which means that an ASTD a can execute event � from state s and move to state s

0. Subscript a can be omitted
when it is clear from the context which ASTD is being referred to.

Because we use variables in some ASTD structures like quantified ASTDs and ASTD calls, we need the notion of an
execution environment �, and we write transitions with respect to �, noted as s �,���!a s

0. We compute a transition starting
from an empty environment, using the following inference rule.

s

�,([])���! s

0
env

s

��! s

0

ASTD are nondeterministic. If several transitions on � are possible for a given state s, then one is nondeterministically
chosen. The operational semantics is inductively defined in the sequel for each ASTD subtype.
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Note that e2 and e3 are internal to automaton 4; hence they belong to the alphabet of 4. The state names of a1 are
a1.N �

= {0, 1, 2, 3, 4} and they are mapped as follows

a1.⌫ �
= {0 7! (0, elem�), 1 7! (1, elem�), 2 7! (2, elem�),

3 7! (3, elem�), 4 7! 4}

Names 0,1,2,3 are mapped to elementary states; name 4 is mapped to the sub-automaton 4. The transition relation a1.�
contains the following transitions.

�( (loc, 0, 4) , e1(x), true , false )
�( (loc, 4, 3) , e4 , true , true )
�( (fsub, 4, 6, 2) , e5 , true , false )
�( (tsub, 1, 4, 6) , e6 , true , false )
�( (tsub, 2, 4,H), e7 , true , false )
�( (loc, 4, 1) , e8 , true , false )
�( (loc, 0, 1) , e9 , x > 1, false )
�( (loc, 1, 2) , e10 , true , false )

The shallow final states of a1 are a1.SF �
= {3}. There are no deep final states in a1. Elementary final states (denoted by eg)

are always considered as shallow, since they do not contain a sub-ASTD. Note that state 4 is not a final state; its automaton
component 4 includes a final state, but that does not make 4 a final state. The initial state of a1 is a1.n0

�
= 0. Automaton 4 is

described in a similar manner.
Operational Semantics. Functions final and init determine, respectively, if a state is final and the initial state of an ASTD.

init((aut, . . .)) �
= (aut�, n0, hinit

, init(⌫(n0)))

h

init

�
= {n 7! init(⌫(n)) | n 2 N}

final((aut�, n, h, s))
�
= (n 2 DF ^ final(s))

_
(n 2 SF )

Note that we must use the full description of a state, for the sake of completeness. The initial state of an automaton is the state
named n0. Its history function is initialized by mapping each state name to the initial state of its internal structure: elementary
states are mapped to the constant elem; ASTD state names are mapped to the initial state of their ASTD, recursively. An
ASTD state is final if it is one of the shallow final states or if it is a deep final state and its internal state is final (recursively).
Complex shallow final states are denoted by a grey shaded box; deep final states are denoted by a black shaded box, as
illustrated in Figure 2.

There are six rules of inference, written in the usual form premiss

conclusion

. The first rule, aut1, describe a transition between
local states.

�((loc, n1, n2),�0
, g,final?)  

aut1
(aut�, n1, h, s)

�,���! (aut�, n2, h
0
, init(⌫(n2)))

Recall that the ASTD semantics is a transition relation on State. The transition relation � of an automaton is simply defined
on state names from N . Inference rule aut1 describes how � relates to the overall state transition relation, taking into account
the history function and the arbitrary type of automaton states (elementary or ASTD). The target state of the transition is the
initial state of the destination state in �: for an elementary state, recall that init(helemi) = elem�; for an ASTD state, init
returns the particular initial state of that structure. This shall become more obvious when other ASTD types are described in
the sequel. Five rules share a common premiss, which we abbreviate by  .

 
�
=

�
(final? ) final(s)) ^
g ^ �

0 = � ^ h

0 = h<

+{n1 7! s}
�
[�]

It provides that a transition noted as final? must start from a final state, that the transition guard g holds, and that the event
received, noted �, is equal, under the current transition environment �, to the event specified in the transition relation, noted
�

0. Moreover, the history function in the target state, noted h

0, is updated by storing the last visited substate of n1. It is
defined using operator <+, the override operator of the B and Z notation.

Rule aut2, handles transitions to substates, in the particular case where the substate is not an history state.

6
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are always considered as shallow, since they do not contain a sub-ASTD. Note that state 4 is not a final state; its automaton
component 4 includes a final state, but that does not make 4 a final state. The initial state of a1 is a1.n0

�
= 0. Automaton 4 is

described in a similar manner.
Operational Semantics. Functions final and init determine, respectively, if a state is final and the initial state of an ASTD.
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Note that we must use the full description of a state, for the sake of completeness. The initial state of an automaton is the state
named n0. Its history function is initialized by mapping each state name to the initial state of its internal structure: elementary
states are mapped to the constant elem; ASTD state names are mapped to the initial state of their ASTD, recursively. An
ASTD state is final if it is one of the shallow final states or if it is a deep final state and its internal state is final (recursively).
Complex shallow final states are denoted by a grey shaded box; deep final states are denoted by a black shaded box, as
illustrated in Figure 2.

There are six rules of inference, written in the usual form premiss

conclusion

. The first rule, aut1, describe a transition between
local states.

�((loc, n1, n2),�0
, g,final?)  

aut1
(aut�, n1, h, s)

�,���! (aut�, n2, h
0
, init(⌫(n2)))

Recall that the ASTD semantics is a transition relation on State. The transition relation � of an automaton is simply defined
on state names from N . Inference rule aut1 describes how � relates to the overall state transition relation, taking into account
the history function and the arbitrary type of automaton states (elementary or ASTD). The target state of the transition is the
initial state of the destination state in �: for an elementary state, recall that init(helemi) = elem�; for an ASTD state, init
returns the particular initial state of that structure. This shall become more obvious when other ASTD types are described in
the sequel. Five rules share a common premiss, which we abbreviate by  .

 
�
=

�
(final? ) final(s))

^ g

^ �

0 = �

^ h

0 = h<

+{n1 7! s}�
[�]

It provides that a transition noted as final? must start from a final state, that the transition guard g holds, and that the event
received, noted �, is equal, under the current transition environment �, to the event specified in the transition relation, noted
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It provides that a transition noted as final? must start from a final state, that the transition guard g holds, and that the event
received, noted �, is equal, under the current transition environment �, to the event specified in the transition relation, noted
�

0. Moreover, the history function in the target state, noted h

0, is updated by storing the last visited substate of n1. It is
defined using operator <+, the override operator of the B and Z notation.

Rule aut2, handles transitions to substates, in the particular case where the substate is not an history state.

6

Transi)on entre états n1 n2σ'

Figure 3. A sequence ASTD including two simple automata

Rule aut5 handles transitions from a substate.

�((fsub, n1, n1[ , n2),�0
, g,final?)

name(s) = n1[
 

aut5
(aut�, n1, h, s)

�,���! (aut�, n2, h
0
, init(⌫(n2)))

Rule aut6, handles transitions within a substate.

s

�,���!
⌫(n) s

0
aut6

(aut�, n, h, s)
�,���! (aut�, n, h, s0)

This is the first recursive rule where the compositionality of our semantics is illustrated. It requires to prove that � can be
executed in the substate, which could be any ASTD. In the target state of the conclusion, only the substate of the automaton
state is changing; the automaton says in the same state name. The history function is unchanged.

3.3 Sequence

The sequence ASTD is a new concept with respect to statecharts. It allows for the sequential composition of two ASTDs.
When the first one reaches a final state, the second one can start its execution. This is particularly useful for problems which
can be decomposed into a set of tasks that have to be executed in sequence.
An Example. Figure 3 illustrates a very simple sequence ASTD, whose component ASTDs are two simple automata.
Automaton a, which is on the left-hand side (LHS) of the arrow symbol, is the first to execute. Upon reception of event e1,
it makes a transition from 1 to 2 and reaches a final state. This enables event e3 in b to be executed upon its reception. Event
e2 is also executable, since it appears on a transition from 2. Suppose e3 is received. Then the sequence ASTD c leaves
ASTD a and executes e3 on b. To represent these transitions, we first need to defined the type of a sequence state, which is
h �, [fst | snd], si, where s 2 State. Keyword left indicates that the sequence ASTD is in its LHS state, and dually for right.
The sequence of events just described is represented as follows.

( �, fst, (aut�, 1, h, elem�))
e1�!c ( �, fst, (aut�, 2, h0

, elem�))
e3�!c ( �, snd, (aut�, 4, h00

, elem�))

The notion of final state does no exist in statecharts. To reproduce in statecharts the same behavior as a sequence ASTD,
one could use a guarded null transition between the two statecharts (see Figure 4); its guard is expressed using a predicate
like in(s1) _ . . . in(s

n

), where s

i

is a state considered as final in the first statechart, thereby exhibiting the structure of the
inner statecharts into the outer statechart, and increasing coupling between the two. If the inner statechart is more complex,
things get even more complicated. Note also that the initial state of a sequence ASTD is simply the initial state of its first
component. Hence, sequence is a useful abstraction fostering simplicity in specification design.
Formal Definition and Semantics. Let Sequence �

= h , n, fst , sndi be the set of sequence ASTDs, where fst , snd 2 ASTD
are respectively the first and second element of the sequence. Functions init and final are defined as follows.

init(( , n, fst , snd))
�
= ( �, fst, init(fst))

final(( �, fst, s)) �
= final(s) ^ final(init(snd))

final(( �, snd, s)) �
= final(s)

8

Transition à l’intérieur d’un état complexe
Membre(m:MEMBRE)

Prêt(b,m)

⫴ b : LIVRE

0

SupMembre(m)

CréerMembre(m)
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Figure 9. A synchronization ASTD including two automata

Figure 10. A coalesced version of the ASTD of Figure 9

s

l

, s

r

2 State. Here is a possible sequence of transitions, where denotes the history function which is omitted, for the sake
of concision.

(|[]|�, (aut�, 1, , elem�), (aut�, 5, , elem�))
e1�!c (|[]|�, (aut�, 2, , elem�), (aut�, 5, , elem�))
e4�!c (|[]|�, (aut�, 2, , elem�), (aut�, 6, , elem�))
e2�!c (|[]|�, (aut�, 3, , elem�), (aut�, 7, , elem�))
e3�!c (|[]|�, (aut�, 4, , elem�), (aut�, 7, , elem�))
e5�!c (|[]|�, (aut�, 4, , elem�), (aut�, 8, , elem�))

When an ASTD based on a binary operator like |[�]| includes an automaton component or a unary operator ASTD, we
can also coalesce the component ASTD with its enclosing box from the binary operator. Figure 10 illustrates a coalesced
version of the ASTD of Figure 9.
Formal Definition and Semantics. Let Synchronization �

= h|[]|, n,�, l, ri be the set of parameterized synchronization
ASTDs, where � ✓ Label denotes a synchronization set of event labels and l, r 2 ASTD are the synchronized ASTDs. Initial
and final states are defined as follows.

init((|[]|, n,�, l, r)))
�
= (|[]|�, init(l), init(r))

final((|[]|�, s
l

, s

r

))
�
= final(s

l

) ^ final(s
r

)

There are three inference rules. Rules |[]|1 and |[]|2 respectively describe execution of events with no synchronization
required on the LHS and the RHS of the synchronization ASTD. Rule |[]|3 describe the synchronization between the LHS
and the RHS.

↵(�) /2 � s

l

�,���!
l

s

0
l|[]|1

(|[]|�, s
l

, s

r

)
�,���! (|[]|�, s0

l

, s

r

)

12

Figure 11. A closure over a quantified choice ASTD
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We use the abbreviation k �
= |[]| with � = ↵(l) \ ↵(r), where ↵(a) denotes the labels of event appearing in ASTD a,

including all its inner ASTDs. It is the parallel composition operator of CSP, which means that the ASTDs synchronize on
common events. We also use 9 �

= |[{}]| with � = {}, which is the interleave operator of CSP.

3.7 Quantified choice

This operator and the next one (quantified synchronization) are not usual operators in state diagrams. They have been
introduced to take into account IS specificities, like managing sets of entity type instances. The quantified choice is very
similar to an existential quantification in first-order logic. It allows to pick a value from a set and execute a component ASTD
with that value. The scope of the quantified variable is the component ASTD. Figure 11 illustrates a closure over a choice
quantification of an automaton. ASTD a iterates on the choice. At each iteration, a new value for x is chosen. The choice
quantification is represented by | x : {4, 5, 6}.

The type of a quantification choice state is h|:�, [? | v], [? | s]i where ? is a constant indicating that the choice hasn’t
been made yet, and v 2 Term denotes the current value of the choice quantified variable when the choice has been made.

The following is a possible sequence of transitions for the ASTD of Figure 11.

(?�, false, (|:�,?, (aut�, 1, , elem�)))
e1(5)���!c (?�, true, (|:�, 5, (aut�, 2, , elem�)))
e2(5)���!c (?�, true, (|:�, 5, (aut�, 3, , elem�)))
e1(4)���!c (?�, true, (|:�, 4, (aut�, 2, , elem�)))

(TR1)

In the initial state, special value ? is used to indicate that the quantified variable hasn’t been instantiated yet. The quantified
choice ASTD can accept e1(4), e1(5) and e1(6). When event e1(5) is received, the only value of x for which the quantified
choice can accept e1(5) is x = 5. This value is recorded in the |:� state. The iteration can complete only by accepting event
e2(5). In the next iteration, a new value of x can be chosen. Again, e1(4), e1(5) and e1(6) can be accepted. When e1(4) is
received, x is bound to 4 and a new iteration can start.

Here is the semantics. Let QChoice �
= h|:, n, x, T, bi be the set of quantified choice ASTDs, where x 2 Var denotes a

quantification variable, T is a type and b 2 ASTD is the quantified ASTD. Initial and final states are defined as follows.

init((|:, n, x, T, b)) �
= (|:�,?,?)

final((|:�,?,?))
�
= 9x : T · final(init(b))

v 6= ? ) (final((|:�, v, s)) �
= final(s)[x := v])

13



Sémantique parallèle quantifié

33

orders, ||| x : int

items, |[{ invoiceOrder,cancelInvoice }]| y : int
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Figure 13. Invoicing of orders using a double synchronization quantification

of order x are synchronized and move to state 5 (which means invoiced). If the invoice is cancelled, each item of the order
goes back to its previous state, thanks to the history state. An order can be deleted at any time.
Formal Definition and Semantics. Let QSynchronization �

= h|[]|:, n, x, T,�, bi be the set of quantified synchronization
ASTDs, where � ✓ Label denotes a synchronization set of event labels and b 2 ASTD is the quantified synchronized ASTD.
The state of a quantified synchronization is of type h|[]|:�, fi where f 2 T ! State is a function which associate a state to
each value of T . Initial and final states are defined as follows.

init((|[]|:, n, x, T,�, b))
�
= (|[]|:�, T ⇥ {init(b)})

final((|[]|:�, f)) �
= 8 v : T · final(f(v))

There are two inference rules: |[]|:1 deals with events requiring no synchronization, while |[]|:2 deals with the ones that
do.

↵(�) 62 � f(v)
�,([x:=v])2���������!

b

s

0
|[]|:1

(|[]|:�, f)
�,���! (|[]|:�, f<+{v 7! s

0})

↵(�) 2 � 8 v : T · f(v) �,([x:=v])2���������!
b

f

0(v)
|[]|:2

(|[]|:�, f)
�,���! (|[]|:�, f 0)

3.9 Guard

A guard ASTD guards the execution of its component ASTD using a predicate. The first event received must satisfy the
guard predicate. Once the guard has been satisfied by the first event, the component ASTD execute the subsequent events
without further constraints from its enclosing guard ASTD. The predicate may refer to variables whose scope include the
guard; in the context of IS specification, the guard could also refer to attributes of entities and associations, similarly to guards
in process expressions of the EB3 method [13].

The guard ASTD is a generalization of the guard specified on an automaton transition. It is especially useful when the
component ASTD is a complex structure, avoiding the duplication of the guard predicate on all the possible first transitions
of that structure.
An example. Figure 14 provides an example of a guard ASTD named c, which is included in the scope of a choice ASTD b,
itself included in a Kleene closure ASTD a. The innermost component is the automaton d. If event e1(v) is received, then
predicate x > 0[([x := v])], which reduces to v > 0 after applying the substitution, must hold for the event to be accepted;
otherwise, it is rejected and ignored by the ASTD. If , event e1(v) is accepted, e2(v) can be accepted to terminate the first
iteration of the closure. A new iteration can then start, and the new value v

0 for x must again satisfy x > 0. Figure 15
provides another example of a guard ASTD named c, which is included in the scope of a closure ASTD b, itself included in a
quantified interleave ASTD a. The innermost component is the automaton d. ASTD a can spawn (so to speak) two instances
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A guard ASTD guards the execution of its component ASTD using a predicate. The first event received must satisfy the
guard predicate. Once the guard has been satisfied by the first event, the component ASTD execute the subsequent events
without further constraints from its enclosing guard ASTD. The predicate may refer to variables whose scope include the
guard; in the context of IS specification, the guard could also refer to attributes of entities and associations, similarly to guards
in process expressions of the EB3 method [13].

The guard ASTD is a generalization of the guard specified on an automaton transition. It is especially useful when the
component ASTD is a complex structure, avoiding the duplication of the guard predicate on all the possible first transitions
of that structure.
An example. Figure 14 provides an example of a guard ASTD named c, which is included in the scope of a choice ASTD b,
itself included in a Kleene closure ASTD a. The innermost component is the automaton d. If event e1(v) is received, then
predicate x > 0[([x := v])], which reduces to v > 0 after applying the substitution, must hold for the event to be accepted;
otherwise, it is rejected and ignored by the ASTD. If , event e1(v) is accepted, e2(v) can be accepted to terminate the first
iteration of the closure. A new iteration can then start, and the new value v

0 for x must again satisfy x > 0. Figure 15
provides another example of a guard ASTD named c, which is included in the scope of a closure ASTD b, itself included in a
quantified interleave ASTD a. The innermost component is the automaton d. ASTD a can spawn (so to speak) two instances
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xASTD = ASTD + variables d’état

• Déclara'on de variables dans un ASTD

⫴ x : T , V = { (y, T, init) }

• x : variable de quan'fica'on
• en lecture seulement
• portée = sous-ASTD
• en lecture dans les gardes et les ac'ons

• y : variable d’état
• portée = sous-ASTD
• modifiable dans les ac'ons
• en lecture dans les gardes
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Membre(m:MEMBRE) 

⫴ b : LIVRE, V = { (c,INT,0) } 

0

SupMembre(m)

CréerMembre(m)

2

Emprunter(b,m) [c < max]
/ {c := c+1}

Retourner(b)
/ {c := c-1}

Renouveler(b)11
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Exemple : détection d’attaques
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Remote_Access_Trojan 

Recon_phase,    Exploit_phase,

Portscan_seq (ipdst, portdst, count , thres, recon_end)  Exploit_seq (ipsrc, ipdst)  

||| ipdst: string ||| ipsrc: string 

Portscan_seq (ipdst: string, portdst: string, count: int, thres: int, recon_end: bool) 

e(?x1:Packet)[x1.proto = "TCP" 
&& x1.ipdst = ipdst
&& x1.portdst = portdst
&& x1.tcpflags = "S"
&& not recon_end]

e(?x2:Packet) [x2.proto = "TCP" 
&& x2.ipsrc = ipdst
&& x2.portsrc = portdst

&& x2.tcpflags = "RA"]  / Atr1

, V ≜ { (thres, int, 45), (recon_end, bool, false) }

𝐀𝐭𝐫𝟐 ≜

𝐀𝐭𝐫𝟏 ≜ {  count := !count+1; 
if !count >= !thres then 

alert "Port scan attack";
count := 0; recon_end := true;; }, aut

||| ipdst: string =>, recon_end, Vb ≜ {(count, int, 0)} ||| portdst: string 

20 1

Fig. 1: Remote Access Trojan ASTD specification

trol the target. We illustrate this approach by a kind of attack called Remote
Access Trojan (RAT) [18]. The main ASTD is identified by the attack name
Remote Access Trojan in the tab of the box. The name can be omitted for nested
ASTDs. Remote Access Trojan illustrates the first extension: it declares two at-
tributes, thres and recond end, with their type and initial value. Attributes are
state variables that can be modified by actions during the execution of a transi-
tion. Remote Access Trojan is a sequence ASTD (denoted by ) that allows for
sequential composition of two ASTDs: Recon phase and Exploit phase. The first
ASTD of the sequence (i.e., Recon phase) must reach a final state before the
next one can start. The definition of a final state depends on the ASTD type;
we shall precise this definition in the sequel.

The ASTD Recon phase starts its execution and inspects the network tra�c
to detect port scanning and operating system (OS) detection attempts. Attempts
may be done by an attacker who tries to scan open ports and OS vulnerabilities
(e.g., system errors, bugs) on the target IS (victim). Attacker actions generate
a malicious network tra�c (packet flows) that contains complex information.
Recon phase is a quantified interleave ASTD (denoted by 9 ipdst : string) that
allows an arbitrary number of instances of the nested ASTD to be executed in
interleaving, each instance being indexed by its ip address ipdst. It also declares
an attribute count whose value is shared by all its interleave instances. Note that
attributes can be declared within any ASTD. ASTD Recon phase has a nested
nameless ASTD which is a quantified interleaving on the destination port (i.e.,
9 portdst : string). For each possible value taken by ipdst and portdst, ASTD
Portscan seq is called to track the scanning of a port; it also receives as parame-
ters attributes count and thres, which it can modify. However, Portscan seq can
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Exploit_seq (ipsrc: string, ipdst: string)  

e(?x1:Packet)[x1.proto = "TCP" 
&& x1.tcpflags = "S"
&& x1.ipsrc = ipsrc
&& x1.ipdst = ipdst]

e(?x2:Packet) [x2.proto = "TCP" 
&& x2.ipsrc = ipdst
&& x2.ipdst = ipsrc 
&& x2.tcpflags = "SA"
&& (contains x2.payload  "std_api")] / Atr2

𝐀𝐭𝐫𝟐 ≜ { alert "Metasploit privilege escalation";; } 

, aut

53 4

Fig. 1: Remote Access Trojan ASTD specification

trol the target. We illustrate this approach by a kind of attack called Remote
Access Trojan (RAT) [18]. The main ASTD is identified by the attack name
Remote Access Trojan in the tab of the box. The name can be omitted for nested
ASTDs. Remote Access Trojan illustrates the first extension: it declares two at-
tributes, thres and recond end, with their type and initial value. Attributes are
state variables that can be modified by actions during the execution of a transi-
tion. Remote Access Trojan is a sequence ASTD (denoted by ) that allows for
sequential composition of two ASTDs: Recon phase and Exploit phase. The first
ASTD of the sequence (i.e., Recon phase) must reach a final state before the
next one can start. The definition of a final state depends on the ASTD type;
we shall precise this definition in the sequel.

The ASTD Recon phase starts its execution and inspects the network tra�c
to detect port scanning and operating system (OS) detection attempts. Attempts
may be done by an attacker who tries to scan open ports and OS vulnerabilities
(e.g., system errors, bugs) on the target IS (victim). Attacker actions generate
a malicious network tra�c (packet flows) that contains complex information.
Recon phase is a quantified interleave ASTD (denoted by 9 ipdst : string) that
allows an arbitrary number of instances of the nested ASTD to be executed in
interleaving, each instance being indexed by its ip address ipdst. It also declares
an attribute count whose value is shared by all its interleave instances. Note that
attributes can be declared within any ASTD. ASTD Recon phase has a nested
nameless ASTD which is a quantified interleaving on the destination port (i.e.,
9 portdst : string). For each possible value taken by ipdst and portdst, ASTD
Portscan seq is called to track the scanning of a port; it also receives as parame-
ters attributes count and thres, which it can modify. However, Portscan seq can

Remote_Access_Trojan 

Recon_phase,    Exploit_phase,

Portscan_seq (ipdst, portdst, count , thres, recon_end)  Exploit_seq (ipsrc, ipdst)  

||| ipdst: string ||| ipsrc: string 

, V ≜ { (thres, int, 45), (recon_end, bool, false) }

𝐀𝐭𝐫𝟏 ≜ {  

||| ipdst: string =>, recon_end, Vb ≜ {(count, int, 0)} ||| portdst: string 
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next one can start. The definition of a final state depends on the ASTD type;
we shall precise this definition in the sequel.
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to detect port scanning and operating system (OS) detection attempts. Attempts
may be done by an attacker who tries to scan open ports and OS vulnerabilities
(e.g., system errors, bugs) on the target IS (victim). Attacker actions generate
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allows an arbitrary number of instances of the nested ASTD to be executed in
interleaving, each instance being indexed by its ip address ipdst. It also declares
an attribute count whose value is shared by all its interleave instances. Note that
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nameless ASTD which is a quantified interleaving on the destination port (i.e.,
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xASTD : Nouvel opérateur : flow

• Un événement peut appartenir à plusieurs specs d’attaque
• Soit S1, …, Sn des specs d’attaque
• S1 ⫴ … ⫴ Sn

• une seule specs exécutera un événement e
• souvent non-déterministe

• S1  ⃦ …  ⃦ Sn : toutes les specs accepter e pour qu’il puisse s’exécuter
• Aucun des opérateurs n’est adéquat
• Nouvel opérateur flow

• S1        …     …          Sn
• chaque qui peut exécuter un événement l’exécute
• déterministe
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Attack 1 Attack 2 Attack n-1

e’ e e’’

e

Attack n

e

Fig. 4: Using the Flow operator to synchronize multiple attack models

Symbol ‹ is used to denote an undefined value. The negation of a transition
predicate is computed using the usual negation as failure approach. Here are the
first two rules when only one of the two sub-ASTDs can execute the event.
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The premiss œ
lr

… œ
rl

ensures that if one execution order succeeds, then the
other must also succeed. It ensures the determinacy of the flow operator.

The third rule describes the case where both sub-ASTDs can execute the
event; it is almost the same as |[]|3, as it requires commutativity.

œ
lr

œ
rl

«d3
(d¶, E, s

l

, s
r

) ‡,Ee,E

Õ
e≠≠≠≠≠æ

a

(d¶, EÕ, sÕ
l1

, sÕ
r1)

3.5 Quantified Synchronization

Syntax. A quantified synchronization ASTD is a structure È|[]|:, x, T, ∆, bÍ where
x œ Var a quantified variable that can be only accessed in read-only mode, T
the type of x, ∆ ™ Label a synchronization set of event labels and b œ ASTD

the body of the synchronization. The state of a quantified synchronization is of
type È|[]|:¶, E, fÍ where |[]|:¶ is the constructor, E the values of attributes and
f œ T æ States is a function which associates a state of b to each value of T .
Initial and final states are defined as follows. Let a be a quantified synchronized
ASTD.

init(a) �= (|[]|:¶, a.E
init

, T ◊ {init(a.b)})
final(a, (|[]|:¶, E, f)) �= ’ c : T · final(a.b, f(c))
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⫴

1 2
a

3
b

4 5
b

6
c

1 2
a

3
b

4 5
b

6
c

Peut refuser la trace abc
Non-déterminisme sur b

Accepte la trace abc
Déterministe

(1,4) –a-> (2,4) –b-> (3,4) –c-/>

(1,4) –a-> (2,4) –b-> (2,5) –c-> (2,6)

(1,4) –a-> (2,4) –b-> (3,5) –c-> (3,6)



xASTD : Autres caractéris1ques

• Actions sur les ASTD
• Factorisation du code commun à toutes les transitions de l’ASTD

• Actions sur les états
• entry code, stay code, exit code
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on the transition, whereas premiss « defines the computation of EÕ
g

from EÕÕ
g

by executing the ASTD action A
astd

. EÕ
e

and EÕ are extracted by partitioning
EÕ

g

using V . Premiss « is reused in all subsequent rules where a sub-ASTD
transition is involved.

Example. Fig. 2 provides an automaton ASTD that we can use to illustrate
transitions and their proofs. ASTD A declares a local variable x and an ASTD
action x := !x+2. State 2 of ASTD A is a complex state, the automaton ASTD
B. It declares a local variable z and an ASTD action x := !xú3.

A, aut, V = {(x,int,0)}, x := !x+2

1

B, aut, V={(z,int,0)}, x:=!x*3

e1(?y : int) [y>x]

/ x := !x+y
3 4

e2(?u : int)

/ z := !z+u; x := !x+z

2

Fig. 2: An automaton ASTD with a complex state 2

ASTD A can execute the following two transitions, where the history state
is omitted.

(aut¶, 1, {(x, 0)}, elem)
e1(1)≠≠≠æ

A

(aut¶, 2, {(x, 3)}, (aut¶, 3, {(z, 0)}, elem))
e2(1)≠≠≠æ

A

(aut¶, 2, {(x, 14)}, (aut¶, 4, {(z, 1)}, elem))

The proof of the first transition is the following, stripping the keywords aut¶ and
elem for the sake of concision.

”((loc, 1, 2), e1(y), y > x, x :=!x + y, false) (y > x · e1(y) = e1(1))([x := 0])
aut1

(1, {(x, 0)}) e1(1),{},{}≠≠≠≠≠≠≠æ
A

(2, {(x, 3)}, (3, {(z, 0)}))
env

(1, {(x, 0)}) e1(1)≠≠≠æ
A

(2, {(x, 3)}, (3, {(z, 0)}))

Rule env adds the empty environments. Rule aut1 succeeds, because y is valued
to 1 by the equality e1(y) = e1(1) and the guard y > x holds after substituting

21
e[c]/ {a1}{a2} {a3}
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Œ can be understood as follows. If the transition is final (i.e., final? = true), then
the current state must be final. The transition guard g holds. The event received,
noted ‡, is equal to the event ‡Õ which labels the automaton transition, after
applying the environment E

g

as a substitution. Environment E
g

is defined in
premiss œ

loc

.

œ
loc

�=

Y
___________]

___________[

if n1 = n2 then A = A
tr

; a.’(n1).A
stay

; a.A
astd

else A = a.’(n1).A
out

; A
tr

; a.’(n2).A
in

; a.A
astd

end
E

g

= E
e

�≠ E

A(E
g

, EÕ
g

)
EÕ

e

= E
e

�≠ (V �≠ EÕ
g

)
EÕ = V � EÕ

g

hÕ = h �≠ {n1 ‘æ s}

Z
___________̂

___________\

Premiss œ
loc

uses the relational domain restriction operator U � r = {x ‘æ
xÕ | x œ U · x ‘æ xÕ œ r}, where r is a relation and U a set, and the domain
subtraction U �≠ r = {x ‘æ xÕ | xÕ ”œ U · x ‘æ xÕ œ r}, and the override
r1 �≠ r2 = (dom(r2)�≠ r1)fi r2. The execution of A on E with possible after value
EÕ is noted A(E, EÕ). The sequential execution of actions A1 and A2 is noted
A1 ; A2. Premiss œ

loc

can be understood as follows. When the transition is a
loop (i.e., n1 = n2), the actions executed are the transition action A

tr

, followed
by the stay action ’(n1).A

stay

of state n1 and finally the ASTD action a.A
astd

,
which is declared in the heading of the automaton. The ASTD action is useful
to factor out state modifications that must be done on every transition of the
ASTD. State actions (entry, exit and stay) are useful to factor out modifications
that must done on all transitions of a given state. When the transition is not a
loop (i.e., n1 ”= n2), the actions executed are the exit code of n1, the transition
action, the entry code of n2 and finally the ASTD action. Symbol E

g

, defined
as as E

e

�≠ E, denotes the global list of variables that can be modified by the
actions. Their after values EÕ

g

are used to set EÕ (the local attributes) using
the restriction on the attributes V declared in the ASTD and the values EÕ

e

(the attributes declared in enclosing ASTDs). The history function in the target
state, noted hÕ, is updated by storing the last visited sub-state of n1.

Rule aut6, handles transitions within the sub-ASTD a.‹(n) of state n.

s
‡,Eg,E

ÕÕÕ
g≠≠≠≠≠≠æ

a.‹(n) sÕ œ
sub

«
aut6

(aut¶, n, E, h, s) ‡,Ee,E

Õ
e≠≠≠≠≠æ

a

(aut¶, n, EÕ, h, sÕ)

œ
sub

�= a.’(n).A
stay

(EÕÕÕ
g

, EÕÕ
g

)

«
�=

!
E

g

= E
e

�≠ E a.A
astd

(EÕÕ
g

, EÕ
g

) EÕ
e

= E
e

�≠ (V �≠ EÕ
g

) EÕ = V � EÕ
g

"

The transition starts from a sub-state s and moves to the sub-state sÕ of state
n. Actions are executed bottom-up. EÕÕÕ

g

denotes the values computed by the
sub-ASTD. Premiss œ

sub

defines the computation of EÕÕ
g

from EÕÕÕ
g

using actions

The state of an automaton cannot be simply represented by a state name. It
is a more complex structure of type Èaut¶, n, E, h, sÍ. aut¶ is the constructor of the
automaton state. n œ S denotes the current state of the automaton. E contains
the values of the automaton attributes. h œ S ‘æ States is the history function
that implements the notion of history state used in statecharts; it records the
last visited sub-state of a state. s œ States is state of the sub-ASTD of n, when
n is a complex state; s = elem when n is elementary.

Given an automaton a œ Automaton, we denote by a.Field with Field œ
{À, S, ’, ‹, ”, SF, DF, n0} the corresponding component of the tuple, i.e., a.n0
denotes the initial state of a.

Functions init and final are now defined as follows. Let a be an automaton
ASTD.

init(a) �= (aut¶, a.n0, a.E
init

, h
init

, init(a.‹(n0)))
h

init

�= {n ‘æ init(a.‹(n)) | n œ a.S}
final(a, (aut¶, n, E, h, s)) �= n œ a.SF ‚ (n œ a.DF · final(a.‹(n), s))

Symbol E
init

denotes the initial values of attributes, as specified in their dec-
laration. Symbol h

init

is the initial value of the history function; it maps each
state name to the initial state of its internal structure: elementary states are
mapped to the constant elem (i.e., init(elem) = elem); complex automaton states
are mapped to the initial state of their sub-ASTD, recursively. A deep final state
is final only when its sub-ASTD is also final, whereas a shallow final state is final
irrespective of the state of its sub-ASTD.

Semantics. There are six rules of inference to define the semantics of an au-
tomaton, in order to deal with the di�erent types of transitions and states. The
two most frequently used rules are illustrated here. The other rules are defined
in [19].

The first rule, aut1, describes a transition between local states.

a.”((loc, n1, n2), ‡Õ, g, A
tr

, final?) Œ œ
loc

aut1
(aut¶, n1, E, h, s) ‡,Ee,E

Õ
e≠≠≠≠≠æ

a

(aut¶, n2, EÕ, hÕ, init(a.‹(n2)))

The conclusion of this rule states that a transition on event ‡ can occur from n1
to n2 with before and after automaton attributes values E, EÕ, and before and
after values h, hÕ for the history state of statecharts. The state of the sub-ASTD
of n2 is its initial state (i.e., init(a.‹(n2))). The premiss provides that such a
transition is possible if there is a matching transition in ”, which is represented
by ”((loc, n1, n2), ‡Õ, g, A

tr

, final?). ‡Õ is the event labelling the transition, and it
may contain variables. The value of these variables is given by the environment
E

e

and local attributes values E, which can be applied as a substitution to a
formula using operator ([ ]). This match on the transition is provided by premiss
Œ defined as follows.

Œ
�=

!
(final? ∆ final(a, (aut¶, n1, E, h, s))) · g · ‡Õ = ‡

"
([E

g

])
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Œ can be understood as follows. If the transition is final (i.e., final? = true), then
the current state must be final. The transition guard g holds. The event received,
noted ‡, is equal to the event ‡Õ which labels the automaton transition, after
applying the environment E

g

as a substitution. Environment E
g

is defined in
premiss œ

loc

.

œ
loc

�=

Y
___________]

___________[

if n1 = n2 then A = A
tr

; a.’(n1).A
stay

; a.A
astd

else A = a.’(n1).A
out

; A
tr

; a.’(n2).A
in

; a.A
astd

end
E

g

= E
e

�≠ E

A(E
g

, EÕ
g

)
EÕ

e

= E
e

�≠ (V �≠ EÕ
g

)
EÕ = V � EÕ

g

hÕ = h �≠ {n1 ‘æ s}

Z
___________̂

___________\

Premiss œ
loc

uses the relational domain restriction operator U � r = {x ‘æ
xÕ | x œ U · x ‘æ xÕ œ r}, where r is a relation and U a set, and the domain
subtraction U �≠ r = {x ‘æ xÕ | xÕ ”œ U · x ‘æ xÕ œ r}, and the override
r1 �≠ r2 = (dom(r2)�≠ r1)fi r2. The execution of A on E with possible after value
EÕ is noted A(E, EÕ). The sequential execution of actions A1 and A2 is noted
A1 ; A2. Premiss œ

loc

can be understood as follows. When the transition is a
loop (i.e., n1 = n2), the actions executed are the transition action A

tr

, followed
by the stay action ’(n1).A

stay

of state n1 and finally the ASTD action a.A
astd

,
which is declared in the heading of the automaton. The ASTD action is useful
to factor out state modifications that must be done on every transition of the
ASTD. State actions (entry, exit and stay) are useful to factor out modifications
that must done on all transitions of a given state. When the transition is not a
loop (i.e., n1 ”= n2), the actions executed are the exit code of n1, the transition
action, the entry code of n2 and finally the ASTD action. Symbol E

g

, defined
as as E

e

�≠ E, denotes the global list of variables that can be modified by the
actions. Their after values EÕ

g

are used to set EÕ (the local attributes) using
the restriction on the attributes V declared in the ASTD and the values EÕ

e

(the attributes declared in enclosing ASTDs). The history function in the target
state, noted hÕ, is updated by storing the last visited sub-state of n1.

Rule aut6, handles transitions within the sub-ASTD a.‹(n) of state n.

s
‡,Eg,E
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a.‹(n) sÕ œ
sub

«
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(aut¶, n, E, h, s) ‡,Ee,E
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œ
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, EÕÕ
g

)

«
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E
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= E
e

�≠ E a.A
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(EÕÕ
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, EÕ
g

) EÕ
e
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e

�≠ (V �≠ EÕ
g

) EÕ = V � EÕ
g
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The transition starts from a sub-state s and moves to the sub-state sÕ of state
n. Actions are executed bottom-up. EÕÕÕ

g

denotes the values computed by the
sub-ASTD. Premiss œ

sub

defines the computation of EÕÕ
g

from EÕÕÕ
g

using actions
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⃦ , V = {(x,int,0)} 

1 2
a / {x := x+1}

3 4
a / {x := x+1}

Valeur finale de x?
• x = 1?
• x = 2?

s
‡,Eg,E

ÕÕ
g≠≠≠≠≠æ

a.fst sÕ «
1

( ¶, E, fst, s) ‡,Ee,E

Õ
e≠≠≠≠≠æ

a

( ¶, EÕ, fst, sÕ)

final(a.fst, s)([E
g

]) init(a.snd)
‡,Eg,E

ÕÕ
g≠≠≠≠≠æ

a.snd

sÕ «
2

( ¶, E, fst, s) ‡,Ee,E

Õ
e≠≠≠≠≠æ

a

( ¶, EÕ, snd, sÕ)

s
‡,Eg,E

ÕÕ
g≠≠≠≠≠æ

a.snd

sÕ «
3

( ¶, E, snd, s) ‡,Ee,E

Õ
e≠≠≠≠≠æ

a

( ¶, EÕ, snd, sÕ)

3.3 Parameterized Synchronization
Syntax. A parameterized synchronization ASTD is a structure È|[]|, ∆, l, rÍ
where ∆ is the synchronization set of event labels, l, r œ ASTD are the synchro-
nized ASTDs. When the label of the event belongs to ∆, the two sub-ASTDs
must both execute it; otherwise either left or the right sub-ASTD can execute it;
if both sub-ASTDs can execute it, the choice between them is nondeterministic.
When ∆ = ?, the synchronization is called an interleaving, noted 9.

A parameterized synchronization state is of type È|[]|¶, E, s
l

, s
r

Í, where s
l

, s
r

are the states of the left and right sub-ASTDs. Initial and final states are defined
as follows. Let a be a parameterized synchronized ASTD.

init(a) �= (|[]|¶, a.E
init

, init(a.l), init(a.r))
final(a, (|[]|¶, E, s

l

, s
r

)) �= final(a.l, s
l

) · final(a.r, s
r

)

Semantics. There are three inference rules. Rules |[]|1 and |[]|2 respectively
describe execution of events, with no synchronization required, either on the
left or the right sub-ASTDs. Rule |[]|1 below caters for execution on the left
sub-ASTD. The function –(e) returns the label of event e.

–(‡) /œ ∆ s
l

‡,Eg,E

ÕÕ
g≠≠≠≠≠æ

a.l

sÕ
l

«
|[]|1

(|[]|¶, E, s
l

, s
r

) ‡,Ee,E

Õ
e≠≠≠≠≠æ

a

(|[]|¶, EÕ, sÕ
l

, s
r

)

Rule |[]|2 is symmetric to |[]|1 and indicates behaviour when the right side execute
the action.

–(‡) /œ ∆ s
r

‡,Eg,E

ÕÕ
g≠≠≠≠≠æ

a.r

sÕ
r

«
|[]|2

(|[]|¶, E, s
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, s
r

) ‡,Ee,E

Õ
e≠≠≠≠≠æ

a

(|[]|¶, EÕ, s
l

, sÕ
r

)
The most interesting case is when the left and right sub-ASTDs must syn-

chronize on an event (i.e., when –(‡) œ ∆). Consider the transitions on the left
and right sub-ASTDs when each of them is executed independently of the other.

œ
ilr

�=
3

s
l

‡,Eg,E

Õ
gl≠≠≠≠≠≠æ

a.l

sÕ
l

s
r

‡,Eg,E

Õ
gr≠≠≠≠≠≠æ

a.r

sÕ
r

4
Since shared variables (E

g

) can be modified by both sub-ASTDs, their modifica-
tions could be inconsistent, which should forbid the synchronization transition.
This requires to check that EÕ

gl

= EÕ
gr

. However, when one variable is modified by
both sub-ASTDs, the natural intent is typically that the compound result of both
sides is desired, that is, to assume that one side executes on the values returned
by the other. For instance, assume that both sub-ASTDs increment shared vari-
able x by 1 and assume that the before value of x is 0. The above semantics gives
x = 1, whereas the compound result is x = 2. If one sub-ASTD increments by
1 and the other by 2, the above semantics forbids execution because the result
is inconsistent, whereas the compound execution returns 3. Executing the left
sub-ASTD before the right sub-ASTD is specified as follows.

œ
lr

�=
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s
l

‡,Eg,E

Õ
g1≠≠≠≠≠≠æ

a.l

sÕ
l

s
r

‡,E
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a.r

sÕ
r

2

Executing the right sub-ASTD before the left sub-ASTD is specified as follows.

œ
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s
r

‡,Eg,E

Õ
g2≠≠≠≠≠≠æ

a.r

sÕ
r

s
l

‡,E

Õ
g2,E
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g≠≠≠≠≠≠æ

a.l

sÕ
l
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Specification & Design

Operation

• No low-level programming
• Declarative approach 
• Abstraction, modularity, reuse
• Code generation
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Vérifica(on ASTD paramétré  -
système infini (R. Chane-Yack-Fa)

• PASTD
• Pas un WSTS
• Difficile de trouver un WQO
• Bounded PASTD sont WSTS

• Accessibilité non décidable
• RMTS Rank Monotone Transition Systems
• Algorithme pour le calcul d’une pred-base fini
• PASTD sont RMTS
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Parameterized Verification of Monotone Information Systems 3

to run the process loan(b, m). The member process is similar except that a member m runs the loan(b, m)
process for every book.

2.1. Parameterized ASTD

In this paper, we restrict ourselves to a fragment of the ASTD language. The graphical and textual notation
of the original ASTDs are detailed in [19].
Let us denote a labeled tree by an expression thanks to the grammar Tree ::= Node | Node[Tree, . . . , T ree].

Definition 1 (ASTD expression). ASTD expressions are defined inductively by the following grammar:

F ::= A (automaton)
| F ||� F (synchronization)
| |

x2T

F (quantified choice)
| |||

x2T

F (quantified interleaving)

where:

• A is an Automaton ASTD (Q, ⌃, �, q0, Qf

) such that Q is a finite set of states where for each q 2 Q, q

is either an elementary state or a composite state, i.e. another ASTD expression, ⌃ a set of labels, � a
labeled transition relation, q0 2 Q an initial state, Q

f

✓ Q a set of final states; the transition relation �

is given by a set of tuples (q1, q2, �, final?), where q1, q2 2 Q, � 2 ⌃ is an event and final? is a boolean
denoting a transition that can be fired only from a final state (represented by a big dot at the origin
of the arrow); an event is noted l(v1, . . . , vn

) where l is the event label, and v

i

are event parameters;
function ↵ extracts the label of an event: ↵(l(v1, . . . , vn

)) = l;
• F ||� F denotes a Synchronization between two component ASTDs running concurrently by executing

events, whose labels are in �, at the same time and interleaving the other events; if � is empty we denote
the operator by ||| and if � is omitted, the processes synchronize on the set of shared labels;

• a Quantified Choice ASTD |
x2T

F allows us to pick a value v from a finite set T and execute its component
ASTD F, where every occurrence of the variable x is replaced by the value v;

• a Quantified Interleaving ASTD |||
x2T

F allows us to execute as many interleaving instances of F as the
number of values in T , where each instance is executed such that x is replaced by the corresponding
value.

In the following, we introduce the following tree-like notation, which is easier to manipulate:

F ::= A[q1[F’], . . . , qk

[F’]] (one subtree for each state q

i

2 Q)
| ||�[F,F]
| |

x2T

[F]
| |||

x2T

[F]

F’ ::= F

| ✏

Note that ✏ is used to create elementary automaton states. Figure 2 shows the tree notation of the ASTD of
Figure 1, where A

member

, A
book

and A
loan

are the automata for member, book and loan processes respec-
tively.
In this fragment of the ASTD language, we make two notable modifications from the original definition.
First, we do not allow recursion, so that an ASTD specification is a tree-like structure. Moreover, we do not
allow quantified synchronizations and we weaken the quantified interleaving ASTD by allowing the process
to be in a final state if one of the sub-processes is in a final state, i.e. there is no final synchronization
between all interleaving processes (see Definition 23 of Appendix A). Indeed, the property of monotony, that
we will explain in Section 3.2, is easier to obtain without quantified synchronizations.
The quantified operators (interleaving and choice) allow us to model replication of processes and interactions
between them. For instance, in the example of the library system, we use the quantified interleaving to
model many replicated processes running concurrently. To model a library that works with any number
of members and books, we can consider a more abstract specification that takes the sets of members and



Outils

• iASTD – Interpréteur d’ASTD
• eASTD – éditeur d’ASTD
• ASTD2B – traducteur des ASTD en B
• ASTD 2 ProB – vérification d’un ASTD avec ProB
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