Diagrammes états-transitions algébriques

GDR GPL 2018, Grenoble, 12 juin 2018

Marc Frappier
http://info.usherbrooke.ca/mfrappier
GRIL – Groupe de recherche en ingénierie du logiciel
Département d'informatique
Faculté des sciences

Automates: historique

- 1936 : Alan Turing†
 - On Computable Numbers, with an Application to the Entscheidungsproblem
 - **Proceedings of the London Mathematical Society**
- 1943: Warren McCulloch[†], Walter Pitts[†]
 - A logical calculus of the ideas immanent in nervous activity
 Bulletin of Mathematical Biophysics
- 1951 : Stephen C. Kleene†
 - Representation of events in nerve nets and finite automata
 U.S. Air Force Project Rand Research Memorandum
- 1955 : George H. Mealy†
 - A method for synthesising sequential circuits Bell System Technical Journal.
- 1956: Edward F. Moore†
 - Gedanken-experiments on sequential machines
 Annals of Mathematics Studies
- 1959: Michael O. Rabin, Dana S. Scott
 - Finite Automata and Their Decision Problems
 IBM Journal

1987: Statecharts - David Harel

Statecharts: a visual formalism for complex systems
Science of Computer Programming

Fig. 25.

Automate: gérer un livre d'une bibliothèque

Automate : gérer 2 livres d'une bibliothèque

Produit d'automate

(aussi appelé entrelacement)

Statecharts

AND state

=

produit d'automate

=

entrelacement

Statecharts : gérer 2 livres

Statecharts : gérer *n* livres

- Parameterized states
 mentionnées dans SCP 1987
 comme une extension possible
- À ma connaissance
 - Pas supportée par UML
 - Pas supportée par les outils

Algèbre de processus (AP)

- Algèbre de processus
 - CSP: 1978: C. A. R. (Tony) Hoare Communicating sequential processes Communications of the ACM
 - CCS: 1978: Robin Milner †
 Algebras for communicating systems
 1er Colloque AFCET-SMF de
 mathématiques appliquées (Palaiseau Paris)
 - SOS: 1980: Gordon Plotkin
 An operational semantics for CSP
 Workshop on Logic of Programs

CSP – Quelques opérateurs (Hoare, Roscoe)

```
    SKIP

                    processus qui termine normalement

    STOP

                    processus qui ne fait rien (deadlock)
• a → E
                    préfixe : exécute l'action a suivi du processus E
• E1 □ E2
                   choix externe entre E1 et E2
• E1; E2
                   composition séquentielle : exécution de E1 suivie de E2
• E1 || E2
                   entrelacement de E1 et E2
• F1 || F2
                   synchronisation de E1 et E2 sur les actions communes
• E1 |X| E2
                   synchronisation de E1 et E2 sur les actions de X
    • E1 || E2 = E1 |Ø | E2
    • E1 || E2 = E1 | \alpha(E1) \cap \alpha(E1) | E2

    C & E

                   garde : exécute E si la condition C est vraie
                   entrelacement quantifié sur les valeurs de x dans T
• || x:T:E
                   choix externe quantifié sur les valeurs de x dans T
• □x:T:E
```

ASTD = Statecharts + AP

- Algebraic State-Transition Diagram (ASTD)
- Composer des Statecharts avec les opérateurs d'une AP
 - ASTD élémentaire = Statecharts
 - État complexe = ASTD

```
• E1 | E2
                choix externe entre E1 et E2
                composition séquentielle : exécution de E1 suivie de E2
• E1 ⇒ E2
                fermeture de Kleene (itération arbitraire sur E)
• E *
• E1 || E2
                entrelacement de E1 et E2
• E1 || E2
                synchronisation de E1 et E2 sur les actions communes
• E1 |X| E2
                synchronisation de E1 et E2 sur les actions de X
• C \Rightarrow E
                garde : exécute E si la condition C est vraie
                entrelacement quantifié sur les valeurs de x dans T
• || x:T:E
• |x:T:E
                choix externe quantifié sur les valeurs de x dans T
```

ASTD: gérer 2 livres d'une bibliothèque

ASTD : Gérer *n* livres

|| x : T : A Entrelacement d'instances de A indexée par x Autant d'instances que de valeurs dans T

x : LIVRE

Statecharts : gérer un membre et un livre

ASTD : Gérer 1 membre et 1 livre Synchronisation

ASTD : Sémantique de la synchronisation

Entrelacement sur

actions propres

Produit synchrone sur

Settlement ive 2 Renouveler Pembre

Renouveler

HODS CON

Retourner

ivre/Membre)

RenSuveler

ASTD : Gérer n_1 membres et n_2 livres

ASTD Membre

État complexe de l'automate Membre

L'état source doit être dans un état final pour déclencher cette transition

ASTD Prêt

Membre

État complexe de Membre est final quand toutes les ins tant du sous-automate de (|| b : LIVRE) sont finales

Livre


```
|| m: MEMBRE: Membre(m)
Livre(b:LIVRE) =
 aut(|m:MEMBRE:Prêt(b,m))
Membre(m:MEMBRE) =
 aut(|| b : LIVRE : Prêt(b,m))
```



```
||| e1 : E! : E1(e1)
 || e2 : E2 : E2(e2)
E1(e1 : E!) =
 aut(|e2 : E2 : A(e1,e2))
E2(e2:E2) =
 aut(||| e1 : E1 : A(e1,e2))
```



```
||| e1 : E! : E1(e1)
 || e2 : E2 : E2(e2)
E1(e1 : E!) =
 aut(||| e2 : E2 : A(e1,e2))
E2(e2:E2) =
 aut(||| e1 : E1 : A(e1,e2))
```



```
E1(e1 : E1) =
 aut(
     k2 e2 : E2 : A1(e1,e2)
     k4 e2 : E2 : A2(e1,e2))
E2(e2 : E2) =
 aut(
     k1 e1 : E1 : A1(e1,e2)
     k3 e1 : E1 : A2(e1,e2))
```

Sémantique opérationnelle des ASTD

Sémantique opérationnelle des ASTD

- Init : ASTD → State
 - Donne l'état initial d'un ASTD
- Final : State → BOOL
 - Détermine si un état est final

```
State = \left\langle \operatorname{aut}_{\circ}, n, h, s \right\rangle \left\langle |[]|, n, \Delta, l, r \right\rangle \left\langle |:_{\circ}, [\bot \mid v], [\bot \mid s] \right\rangle \left\langle |[]|:, n, x, T, \Delta, b \right\rangle ...
```

Sémantique et règles d'inférence

State × Event × State

$$s \xrightarrow{\sigma}_{a} s'$$
 $s \xrightarrow{\sigma, \Gamma}_{a} s'$

$$env \xrightarrow{s \xrightarrow{\sigma, ([])} s'} s'$$

Sémantique automate

$$init((\mathsf{aut},\ldots)) \stackrel{\triangle}{=} (\mathsf{aut}_{\circ}, n_0, h_{init}, init(\nu(n_0)))$$
 $h_{init} \stackrel{\triangle}{=} \{n \mapsto init(\nu(n)) \mid n \in N\}$
 $final((\mathsf{aut}_{\circ}, n, h, s)) \stackrel{\triangle}{=} (n \in DF \land final(s))$
 \lor
 $(n \in SF)$

Transition entre états

$$n1$$
 σ' $n2$

$$\operatorname{\mathsf{aut}}_1 \xrightarrow{\delta((\operatorname{\mathsf{loc}}, n_1, n_2), \sigma', g, \mathit{final}?)} \Psi \xrightarrow{(\operatorname{\mathsf{aut}}_{\diamond}, n_1, h, s)} \xrightarrow{\sigma, \Gamma} (\operatorname{\mathsf{aut}}_{\diamond}, n_2, h', \mathit{init}(\nu(n_2)))$$

Transition à l'intérieur d'un état complexe

$$\mathsf{aut}_6 \xrightarrow[(\mathsf{aut}_\circ, n, h, s) \xrightarrow{\sigma, \Gamma} (\mathsf{aut}_\circ, n, h, s')]{\sigma, \Gamma} (\mathsf{aut}_\circ, n, h, s')$$

Sémantique parallèle

$$init((|[]|, n, \Delta, l, r))) \stackrel{\Delta}{=} (|[]|_{\circ}, init(l), init(r))$$

 $final((|[]|_{\circ}, s_l, s_r)) \stackrel{\Delta}{=} final(s_l) \wedge final(s_r)$

$$|[]|_{1} \frac{\alpha(\sigma) \notin \Delta \qquad s_{l} \xrightarrow{\sigma, \Gamma}_{l} s'_{l}}{(|[]|_{\circ}, s_{l}, s_{r}) \xrightarrow{\sigma, \Gamma} (|[]|_{\circ}, s'_{l}, s_{r})}$$

$$|[]|_{2} \frac{\alpha(\sigma) \notin \Delta \qquad s_{r} \xrightarrow{\sigma, \Gamma}_{r} s'_{r}}{(|[]|_{\circ}, s_{l}, s_{r}) \xrightarrow{\sigma, \Gamma} (|[]|_{\circ}, s_{l}, s'_{r})}$$

$$|[]|_{3} \xrightarrow{\alpha(\sigma) \in \Delta} s_{l} \xrightarrow{\sigma, \Gamma}_{l} s'_{l} s_{r} \xrightarrow{\sigma, \Gamma}_{r} s'_{r}$$

$$(|[]|_{\circ}, s_{l}, s_{r}) \xrightarrow{\sigma, \Gamma} (|[]|_{\circ}, s'_{l}, s'_{r})$$

Sémantique parallèle quantifié

$$init((|[]|:,n,x,T,\Delta,b)) \stackrel{\triangle}{=} (|[]|:_{\circ},T \times \{init(b)\})$$

 $final((|[]|:_{\circ},f)) \stackrel{\triangle}{=} \forall v:T \cdot final(f(v))$

$$|[]|:_{1} \frac{\alpha(\sigma) \not\in \Delta \qquad f(v) \xrightarrow{\sigma, ([x:=v]) \lhd \Gamma}_{b} s'}{(|[]|:_{\circ}, f) \xrightarrow{\sigma, \Gamma} (|[]|:_{\circ}, f \hookleftarrow \{v \mapsto s'\})}$$

$$|[]|:_{2} \xrightarrow{\alpha(\sigma) \in \Delta} \forall v : T \cdot f(v) \xrightarrow{\sigma, ([x:=v]) \lhd \Gamma}_{b} f'(v)$$

$$(|[]|:_{\circ}, f) \xrightarrow{\sigma, \Gamma} (|[]|:_{\circ}, f')$$

xASTD = ASTD + variables d'état

Déclaration de variables dans un ASTD

$$||| x : T, V = \{ (y, T, init) \}$$

- x : variable de quantification
 - en lecture seulement
 - portée = sous-ASTD
 - en lecture dans les gardes et les actions
- y : variable d'état
 - portée = sous-ASTD
 - modifiable dans les actions
 - en lecture dans les gardes

Compter le nombre de prêts

Détection d'intrusion

Spécification d'attaque

Port Scanning (nmap)

Exemple : détection d'attaques

Détection d'attaques (suite)

 Remote_Access_Trojan , V ≜ { (thres, int, 45), (recon_end, bool, false) }

 Recon_phase, ||| ipdst: string, V₀ ≜ {(count, int, 0)} ||| portdst: string

 Exploit_phase, =>, recon_end ||| ipsrc: string ||| ipdst: string || ipdst: strin

 $A_{tr2} \triangleq \{ \text{ alert "Metasploit privilege escalation";; } \}$

xASTD: Nouvel opérateur: flow

- Un événement peut appartenir à plusieurs specs d'attaque
- Soit S1, ..., Sn des specs d'attaque
- S1 || ... || Sn
 - une seule specs exécutera un événement e
 - souvent non-déterministe
- S1 | ... | Sn : toutes les specs accepter e pour qu'il puisse s'exécuter
- Aucun des opérateurs n'est adéquat
- Nouvel opérateur flow
 - S1 U ... U Sn
 - chaque qui peut exécuter un événement l'exécute
 - déterministe

Flow

Flow U

Peut refuser la trace abc Non-déterminisme sur b

$$(1,4)$$
 -a-> $(2,4)$ -b-> $(3,4)$ -c-/>
 $(1,4)$ -a-> $(2,4)$ -b-> $(2,5)$ -c-> $(2,6)$

Accepte la trace abc Déterministe

$$(1,4)$$
 -a-> $(2,4)$ -b-> $(3,5)$ -c-> $(3,6)$

xASTD : Autres caractéristiques

- Actions sur les ASTD
 - Factorisation du code commun à toutes les transitions de l'ASTD
- Actions sur les états
 - entry code, stay code, exit code

Sémantique de xASTD

$$\Omega_{loc} \triangleq \left\{ \begin{array}{l} \textbf{if } n_1 = n_2 \textbf{ then } A = A_{tr} \ ; \ a.\zeta(n_1).A_{stay} \ ; \ a.A_{astd} \\ \textbf{else } A = a.\zeta(n_1).A_{out} \ ; \ A_{tr} \ ; \ a.\zeta(n_2).A_{in} \ ; \ a.A_{astd} \textbf{ end} \\ E_g = E_e \Leftrightarrow E \\ A(E_g, E_g') \\ E_e' = E_e \Leftrightarrow (V \lessdot E_g') \\ E' = V \vartriangleleft E_g' \\ h' = h \Leftrightarrow \{n_1 \mapsto s\} \end{array} \right\}$$

$$\frac{a.\delta((\operatorname{loc},n_1,n_2),\sigma',g,A_{tr},\mathit{final?})\ \varPsi\ \Omega_{loc}}{(\operatorname{aut}_{\circ},n_1,E,h,s)\xrightarrow{\sigma,E_e,E'_e}_a(\operatorname{aut}_{\circ},n_2,E',h',\mathit{init}(a.\nu(n_2)))}$$

Sémantique des automates

$$\operatorname{aut}_{6} \xrightarrow{s \xrightarrow{\sigma, E_{g}, E_{g}^{\prime\prime\prime}}}_{a.\nu(n)} s^{\prime} \qquad \Omega_{sub} \qquad \Theta$$

$$= (\operatorname{aut}_{\circ}, n, E, h, s) \xrightarrow{\sigma, E_{e}, E_{e}^{\prime}}_{a} (\operatorname{aut}_{\circ}, n, E^{\prime}, h, s^{\prime})$$

$$\Omega_{sub} \stackrel{\triangle}{=} a.\zeta(n).A_{stay}(E_{g}^{\prime\prime\prime}, E_{g}^{\prime\prime})$$

$$\Theta \triangleq (E_{g} = E_{e} \Leftrightarrow E \quad a.A_{astd}(E_{g}^{\prime\prime}, E_{g}^{\prime}) \quad E_{e}^{\prime} = E_{e} \Leftrightarrow (V \lessdot E_{g}^{\prime}) \quad E^{\prime} = V \vartriangleleft E_{g}^{\prime})$$

Sémantique de la synchronisation

Valeur finale de x?

- x = 1?
- x = 2?

x = 2 (s_l, s_r) exécution en séquence ordre indépendant

 \star (s₁,s'_r) (s_1,s'_r)

Sémantique de la synchronisation

$$\Omega_{lr} \stackrel{\triangle}{=} \left(s_l \xrightarrow{\sigma, E_g, E'_{g1}} a.l \ s'_l \qquad s_r \xrightarrow{\sigma, E'_{g1}, E''_{g}} a.r \ s'_r \right)$$

$$\Omega_{rl} \stackrel{\triangle}{=} \left(s_r \xrightarrow{\sigma, E_g, E'_{g2}} a.r \ s'_r \qquad s_l \xrightarrow{\sigma, E'_{g2}, E''_{g}} a.l \ s'_l \right)$$

$$|[]|_{3} \xrightarrow{\alpha(\sigma) \in \Delta} \Omega_{lr} \Omega_{rl} \Omega_{rl} \Theta$$

$$(|[]|_{\circ}, E, s_{l}, s_{r}) \xrightarrow{\sigma, E_{e}, E'_{e}}_{a} (|[]|_{\circ}, E', s'_{l_{1}}, s'_{r_{1}})$$

Approche pour la détection d'intrusion

Code generation

Combinaison ASTD-B (Fayolle)

Vérification ASTD paramétré - système infini (R. Chane-Yack-Fa)

- PASTD
- Pas un WSTS
 - Difficile de trouver un WQO
 - Bounded PASTD sont WSTS
- Accessibilité non décidable
- RMTS Rank Monotone Transition Systems
 - Algorithme pour le calcul d'une pred-base fini
 - PASTD sont RMTS

```
egin{array}{ll} \mathbf{F} ::= \mathcal{A} \ \mid & \mathbf{F} \mid\mid_{\Delta} \mathbf{F} \ \mid & \mid_{x \in T} \mathbf{F} \ \mid & \mid\mid_{x \in T} \mathbf{F} \end{array}
```

(automaton) (synchronization) (quantified choice) (quantified interleaving)

Outils

- iASTD Interpréteur d'ASTD
- eASTD éditeur d'ASTD
- ASTD2B traducteur des ASTD en B
- ASTD 2 ProB vérification d'un ASTD avec ProB

Remerciements

- Régine Laleau
- Richard St-Denis
- Benoit Fraikin
- Amel Mammar
- Frédéric Gervais
- Jérémy Milhau
- Thomas Fayolle
- Kevin Salabert
- Lionel Nganyewou Tidjon

- Jonathan Martineau
- Félix Vigneault
- Martin Fontaine
- Alexandre Guertin
- Michel Embe Jiague
- Alain Finkel
- Raphaël Chane-Yack-Fa
- Michael Leuschel