Software Visualization or How to See and Explore the Intangible

Acknowledgement

- Omar Benomar
- Simon Bouvier
- Karim Dhambri
- Guillaume Langelier
- Pierre Poulin
- Ahmed Sfayhi

Maintenance Tasks

Maintenance problems

Maintenance Tasks

- Many maintenance tasks difficult to automate
 - Multi-criteria decision making
 - Difficulty to capture/encode contextual information
 - Complexity/scalability

Interactive Visualization

- Semi-automatic approach
- Maintenance task = Set of reasoning and calculation modules
 - Set of automated modules AMs (explicit knowledge)
 - Human analyst module HM
 - Interactive visualization =
 Interface between AMs and HM

Visualization Tools for Maintenance

 Dozens of tools proposed each year in VLHCC, SOFTVIS, VISSOFT, SE journals, conferences and workshops, etc.

Visualization Tools for Maintenance

- Not used outside the community that developed them
- What's wrong?
 - Not tailored for specific tasks
 - Effort and efficiency
 - Intrinsic complexity
 - Suitability

- Maintenance world
 - Maintenance task
 - Exploring data extracted from software artifacts
 - Modifying software artifacts
 - Data
 - Entities (at different levels) with Properties, having Relationships and Structures
 - Viewpoints
 - Time
 - Operations
 - Aggregation, clustering, identification, etc.

- Example : detecting anomalies
 - Example of anomaly definition
 - A Blob is a controller class, abnormally large, with almost no parents and no children. It mainly uses data classes, i.e. very small classes with almost no parents and no children.
 - Model
 - Entities: classes, methods
 - Properties: coupling, cohesion, complexity
 - · Relationships: invocations, inheritance
 - Structure: architecture
 - Viewpoints: code, metrics
 - Time: multiple version
 - Operations: evaluate conditions, etc.

Visualization world

- Visualization world
 - Interactive visualization
 - Processing large sets of multidimensional data
 - Mainly a perception problem
 - Human brain hard-wired to perceive things in a certain way
 - Understanding human perception reduces complexity and increases efficiency

- Software is intangible
- Representations of
 - Entities by shapes
 - Properties by graphical attributes of shapes
 - Relationships by connecting shapes
 - Structures by spatially organizing shapes

- Representing entities (principles)
 - Gestalt Rules of Perception

- Representing entities (principles)
 - Simplicity

- Representing entities (principles)
 - Continuity

- Representing entities (principles)
 - Continuity

- Representing entities
 - Example of VERSO

- Representing properties (principles)
 - Interaction between visual properties

Size vs depth

- Representing properties (principles)
 - Interaction between visual properties

Size vs depth

- Representing properties (principles)
 - Interaction between visual properties

Size vs orientation

- Representing properties (principles)
 - Interaction between visual properties

Size vs orientation

- Representing properties (principles)
 - Interaction between visual properties

Color & contrast

- Representing properties (principles)
 - Interaction between visual properties

Color & contrast

- Representing properties
 - Example of VERSO

- Representing relationships (principles)
 - Explicit representation vs size

de Montréal

- Representing relationships (principles)
 - Explicit representation vs size

 Representing relationships (principles)

Explicit representation vs size

- Representing relationships (principles)
 - On-demand representation

Université

de Montréa

Defining Views

- Representing relationships (principles)
 - Flow maps

Minard, C. J. "Carte figurative et approximative des quantités de vin français exportés par mer en 1864".

- Representing relationships
 - Example of VERSO (filters)

- Representing relationships
 - Example of VERSO (Edge bundles)

- Representing structure (principles)
 - Whole vs parts

The unified whole is different from the sum of the parts.

- Representing structure (principles)
 - Law of proximity

- Representing structure
 - Example of VERSO

- Representing structure
 - Example of VERSO

- Representing structure
 - Example of VERSO

- Within the same level (principles)
 - Change detection mechanisms
 - Change vs difference
 - Multiple-viewpoints management
 - Visual coherence
 - Spatial coherence
 - Temporal coherence

- Spatial coherence
 - Difference detection

- Spatial coherence
 - Change detection

Université mode Montréal

- Spatial coherence
 - Change detection

Spatial coherence

Spatial coherence

- Temporal coherence
 - Change Blindness

Rensink RA, O'Regan JK, and Clark JJ (1997). To See or Not to See: The Need for Attention to Perceive Changes in Scenes. Psychological Science, 8:368-373.

- Within the same level
 - Example of VERSO for the evolution
 - Fixed positions
 - Relative positions

- Between levels (principles)
 - Keeping track of the context
 - Semantic zoom

- Between levels
 - Example of VERSO

Keeping track of the context

Keeping track of the context

niversité de Montréal

niversité

de Montréa

Keeping track of the context

Interactions

From analysis tasks to interaction scenarios

Blob Detection

Task description

```
Goal(Blob detection, BlobSet, System)
      achieve (Controler class detect, CDD, System)
      achieve (Data class verif, BlobSet , CDD)
Goal (Controler class detect, Cand, Scope)
      Filter (Scope, Cand,
         ishigh WMC and
         ininterval LOW MEDIUM LCOM5 and
         islow DIT)
Goal (Data class verif, Found, Cand)
      for each(c, Cand) {
         Filter(System, Rel, iscalled(c))
         Filter (Rel, RelData, islow WMC and islow DIT)
         Compute derived value (RelData, count, Num)
         if (ishigh Num) {
            operation (+, Found, Found, c)
```


- Blob Detection
 - Interaction scenario

Mapping

```
Graphic representation
   3-D box >> Class
Graphics attributes
   twist >> LCOM5
   height >> DIT
   color >> WMC
```


Blob Detection

Interaction scenario

```
Scenario (Data class verif)
      for each(c in CC) {
         Overview (Class)
         Apply automatic filter(Class, iscalled(c))
         Tag(REL, Result)
         Overview (Class)
         Block(REL) {
             Check if (color:blue
                and height: low)
             Select (Result)
             Tag(RelData, Result)
         Overview (RelData)
         Do function (count, RelData, Num)
         Block{
             Check if (Num, ishigh)
             Tag(\overline{Blob}, c)
```


Blob Detection

Blob Detection

Problem

- In the context of large-scale systems
 - Principles mentioned above reduce data exploration complexity
 - Complexity is still overwhelming
 - Much too difficult for a human analyst
- How can we increase tolerance to complexity?

Principles

Flow state (Csikszentmihalyi)

Mental state of operation in which the person is fully immersed in what he or she is doing, characterized by a feeling of energized focus, full involvement, and success in the process of the activity

- Characteristics
 - Clear goals, distorted sense of time, ...
- Applications
 - Education, (video) gaming, sport, ...

Principles

- Neurological theory of aesthetic experience (Ramachandran)
 - 10 universal laws of art:
 - 1. Peak shift
 - 2. Grouping
 - 3. Contrast
 - 4. Isolation
 - 5. Perception problem solving
 - 6. Symmetry
 - 7. Abhorrence of coincidence/generic viewpoint
 - 8. Repetition, rhythm and orderliness
 - 9. Balance
 - 10. Metaphor

Peak shift

- Exaggerated versions of learned objects easier to interpret by the brain
- Examples
 - Caricatures
 - Women in art
 - Forms
 - Positions

Peak shift

Exaggerated versions of learned objects easier to interpret by the brain

- Examples
 - Caricatures
 - Women in art
 - Forms
 - Positions

- Grouping & Perception problem solving
 - Human visual system is trained to detect regularities in a world of noise
 - Discovery of regularities is rewarding (AHA sensation)
 - Example

- Symmetry & Repetition, rhythm and orderliness
 - Symmetry is attractive
 - Repetition, rhythm and orderliness are soothing
 - Example
 - Islamic art
 - Western painting

- Symmetry & Repetition, rhythm and orderliness
 - Symmetry is attractive
 - Repetition, rhythm and orderliness are soothing
 - Example
 - Islamic art
 - Western painting

Metaphor

- Generates emotional response even before we understand it
- Examples
 - Indian art
 - Western painting

Metaphor

- Generates emotional response even before we understand it
- Examples
 - Indian art
 - Western painting

Implementation example

- Differences between entities can be visually amplified
- City metaphor is used
- Data exploration tasks are modeled as perceptual problem solving
- Entities are positioned following a particular order
- Entity groupings are meaningful
- Each graphical configuration has a single meaning

Conclusion

Interactive Visualization

- · Semi-automatic approach
- Maintenance task = Set of reasoning and calculation modules
 - Set of automated modules AMs (explicit knowledge)
 - Human analyst module HM
 - Visualization = Interface between AMs and HM

Université n de Montr

· Visualization world

Increasing tolerance to complexity

- Grouping & Perception problem solving
 - Human visual system is trained to detect regularities in a world of noise
 - Discovery of regularities is rewarding (AHA sensation)
 - Example

Université de Montréal

Université de Montréal

